N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} Argyres-Douglas theories, N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD and Seiberg duality

被引:0
作者
Stefano Bolognesi
Simone Giacomelli
Kenichi Konishi
机构
[1] University of Pisa,Department of Physics “E. Fermi”
[2] INFN,undefined
[3] Sezione di Pisa,undefined
[4] Université Libre de Bruxelles and International Solvay Institutes,undefined
关键词
Supersymmetric gauge theory; Supersymmetry and Duality; Supersymmetric Effective Theories; Renormalization Group;
D O I
10.1007/JHEP08(2015)131
中图分类号
学科分类号
摘要
We revisit the study of singular points in the Coulomb branch of N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD in four dimensions with gauge group SU(N). For certain choices of the mass parameters these vacua are not lifted by a mass term for the chiral multiplet in the adjoint representation. By using recent results about the M5 brane description of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} theories we study the resulting vacua and argue that the low-energy effective theory has a simple Lagrangian description involving a free chiral multiplet in the adjoint representation of the flavor symmetry group, a system somewhat reminiscent of the standard low-energy pion description of the real-world QCD. This fact is quite remarkable in view of the fact that the underlying N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SCFT (the Argyres-Douglas systems) are strongly-coupled non-local theories of quarks and monopoles.
引用
收藏
相关论文
共 69 条
[11]  
Yan W(1995) supersymmetric QCD Nucl. Phys. B 448 93-undefined
[12]  
Yonekura K(2011)The moduli space of vacua of JHEP 01 078-undefined
[13]  
Witten E(2013) SUSY QCD and duality in JHEP 03 009-undefined
[14]  
Giacomelli S(2008) SUSY QCD JHEP 09 109-undefined
[15]  
Seiberg N(1995)Dynamical symmetry breaking in supersymmetric SU(n Nucl. Phys. B 435 129-undefined
[16]  
Witten E(1996)) and USp(2n Nucl. Phys. B 461 71-undefined
[17]  
Argyres PC(1996)) gauge theories Nucl. Phys. B 471 430-undefined
[18]  
Plesser MR(1997)New phenomena in SU(3) supersymmetric gauge theory Nucl. Phys. B 500 3-undefined
[19]  
Seiberg N(2007)Comments on scaling limits of 4d Commun. Math. Phys. 275 209-undefined
[20]  
Carlino G(1995) theories Phys. Rev. Lett. 75 1699-undefined