N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} Argyres-Douglas theories, N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD and Seiberg duality

被引:0
作者
Stefano Bolognesi
Simone Giacomelli
Kenichi Konishi
机构
[1] University of Pisa,Department of Physics “E. Fermi”
[2] INFN,undefined
[3] Sezione di Pisa,undefined
[4] Université Libre de Bruxelles and International Solvay Institutes,undefined
关键词
Supersymmetric gauge theory; Supersymmetry and Duality; Supersymmetric Effective Theories; Renormalization Group;
D O I
10.1007/JHEP08(2015)131
中图分类号
学科分类号
摘要
We revisit the study of singular points in the Coulomb branch of N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD in four dimensions with gauge group SU(N). For certain choices of the mass parameters these vacua are not lifted by a mass term for the chiral multiplet in the adjoint representation. By using recent results about the M5 brane description of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} theories we study the resulting vacua and argue that the low-energy effective theory has a simple Lagrangian description involving a free chiral multiplet in the adjoint representation of the flavor symmetry group, a system somewhat reminiscent of the standard low-energy pion description of the real-world QCD. This fact is quite remarkable in view of the fact that the underlying N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SCFT (the Argyres-Douglas systems) are strongly-coupled non-local theories of quarks and monopoles.
引用
收藏
相关论文
共 69 条
[1]  
Gaiotto D(2012) dualities JHEP 08 034-undefined
[2]  
Bonelli G(2013) geometries via M-theory JHEP 10 227-undefined
[3]  
Giacomelli S(2014)Generalized Hitchin system, spectral curve and JHEP 01 001-undefined
[4]  
Maruyoshi K(2014) dynamics JHEP 01 142-undefined
[5]  
Tanzini A(2013)Supersymmetric gauge theory, (2, 0) theory and twisted 5d super-Yang-Mills JHEP 10 010-undefined
[6]  
Xie D(1997) dynamics with T Nucl. Phys. B 507 658-undefined
[7]  
Yonekura K(2015) theory JHEP 01 044-undefined
[8]  
Yonekura K(1994)Branes and the dynamics of QCD Nucl. Phys. B 431 484-undefined
[9]  
Maruyoshi K(1996)Four dimensional superconformal theories from M5 branes Nucl. Phys. B 471 159-undefined
[10]  
Tachikawa Y(2000)Monopoles, duality and chiral symmetry breaking in Nucl. Phys. B 590 37-undefined