共 29 条
Global Connectivity And Expansion: Long Cycles and Factors In f-Connected Graphs
被引:0
|作者:
Stephan Brandt
Hajo Broersma
Reinhard Diestel
Matthias Kriesell
机构:
[1] Technische Universität Ilmenau,Fak. Mathematik & Naturwissenschaften
[2] University of Durham,Department of Computer Science, Science Labs
[3] Universität Hamburg,Mathematisches Seminar
[4] Universität Hamburg,Mathematisches Seminar
来源:
Combinatorica
|
2006年
/
26卷
关键词:
05C40;
05C38;
05C70;
05C45;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Given a function f : ℕ→ℝ, call an n-vertex graph f-connected if separating off k vertices requires the deletion of at least f(k) vertices whenever k≤(n−f(k))/2. This is a common generalization of vertex connectivity (when f is constant) and expansion (when f is linear). We show that an f-connected graph contains a cycle of length linear in n if f is any linear function, contains a 1-factor and a 2-factor if f(k)≥2k+1, and contains a Hamilton cycle if f(k)≥2(k+1)2. We conjecture that linear growth of f suffices to imply hamiltonicity.
引用
收藏
页码:17 / 36
页数:19
相关论文