Convergence of Lax–Friedrichs and Godunov schemes for a nonstrictly hyperbolic system of conservation laws arising in oil recovery

被引:0
|
作者
George Noel Djoufedie
Elisabetta Felaco
Bruno Rubino
Rosella Sampalmieri
机构
[1] University of L’Aquila,Department of Information Engineering, Computer Sciences and Mathematics
[2] University of Hamburg,Department of Mathematics
来源
Continuum Mechanics and Thermodynamics | 2016年 / 28卷
关键词
Nonstrictly hyperbolic system; Compensated compactness; Godunov scheme; Lax Friedrichs scheme; Oil recovery; Water alternating gas (WAG);
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 \times 2}$$\end{document} system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperbolicity of the system requires a careful analysis of the entropy functions, whose regularity is necessary to obtain the result. For this purpose, it is necessary to combine the classical techniques referring to a singular Euler–Poisson–Darboux equation with the compensated compactness method.
引用
收藏
页码:331 / 349
页数:18
相关论文
共 50 条