A New Approach to Support Point Theory for the Class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}$$\end{document}

被引:0
作者
Stephen M. Zemyan
机构
[1] Penn State Mont Alto,Department of Mathematics
关键词
Support point; omitted arc; wiggle point; waver point; spherical derivative; Schwarzian derivative; level set; 30C45;
D O I
10.1007/BF03321083
中图分类号
学科分类号
摘要
In this paper, we introduce a new technique for measuring the hypothetical non-monotonicity of the argument of the vector tracing the omitted arc of a support point of the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal S}$\end{document}. It has been previously shown that the number of sign changes of (arg w(t))′ on the omitted arc is finite. Here, we derive upper bounds for that number in terms of both the spherical and Schwarzian derivatives. Thus, our innovative approach identifies an inherently interesting connection between support point theory and these derivatives.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 13 条
[1]  
Brown J E(1979)Geometric properties of a class of support points of univalent functions Trans. Amer. Math. Soc. 256 371-382
[2]  
Brickman L(1974)Support points of the set of univalent functions Proc. Amer. Math. Soc. 42 523-528
[3]  
Wilken D R(1976)Some new properties of support points for compact families of univalent functions in the unit disk Michigan Math. J. 23 207-216
[4]  
Hengartner W(1995)Geometric properties of some support points of univalent functions Houston J. Math. 21 95-102
[5]  
Schober G(1978)Extremal properties of a class of slit conformal mappings Michigan Math. J. 25 223-232
[6]  
Hibschweiler I Q(1981)New support points of Proc. Amer. Math. Soc. 81 425-428
[7]  
Kirwan W(1980) and extreme points of Pacific J. Math. 86 561-564
[8]  
Pell R(1997)Support point functions and the Loewner variation Tamkang J. Math. 28 101-117
[9]  
Pearce K(2003)On the extremal curvature and torsion of stereographically projected analytic curves Int. J. Math. Math. Sci 2003 1633-1644
[10]  
Pell R(2003)On some new properties of the spherical curvature of stereographically projected analytic curves Complex Variables 48 791-796