Adaptive estimation in the single-index model via oracle approach

被引:4
作者
Lepski O. [1 ]
Serdyukova N. [2 ]
机构
[1] Aix-Marseille Université, Marseille
[2] Universidad de Concepción, Concepción
关键词
adaptive estimation; Gaussian white noise; lower bounds; minimax rate of convergence; nonparametric function estimation; oracle inequalities; single-index; structural adaptation;
D O I
10.3103/S1066530713040030
中图分类号
学科分类号
摘要
In the framework of nonparametric multivariate function estimation we are interested in structural adaptation. We assume that the function to be estimated has the "single-index" structure where neither the link function nor the index vector is known. This article suggests a novel procedure that adapts simultaneously to the unknown index and the smoothness of the link function. For the proposed procedure, we prove a "local" oracle inequality (described by the pointwise seminorm), which is then used to obtain the upper bound on the maximal risk of the adaptive estimator under assumption that the link function belongs to a scale of Hölder classes. The lower bound on the minimax risk shows that in the case of estimating at a given point the constructed estimator is optimally rate adaptive over the considered range of classes. For the same procedure we also establish a "global" oracle inequality (under the L r norm, r < ∞) and examine its performance over the Nikol'skii classes. This study shows that the proposed method can be applied to estimating functions of inhomogeneous smoothness, that is whose smoothness may vary from point to point. © 2013 Allerton Press, Inc.
引用
收藏
页码:310 / 332
页数:22
相关论文
共 39 条
  • [1] Bauer, F., Hohage, T., Munk, A., Iteratively Regularized Gauss-Newton Method for Nonlinear Inverse Problems with Random Noise (2009) SIAMJ.Numer. Anal., 47 (3), pp. 1827-1846
  • [2] Bertin, K., Rivoirard, V., Maxiset in Sup-Norm for Kernel Estimators (2009) Test, 18 (3), pp. 475-496
  • [3] Besov, O.V., Il'in, V.P., Nikol'skii, S.M., (1978) Integral Representations of Functions and Imbedding Theorems, in Scripta Series in Mathematics, , Washington, D.C.: Winston
  • [4] Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P., Generalized Partially Linear Single-Index Models (1997) J. Amer. Statist. Assoc., 92 (438), pp. 477-489
  • [5] Chichignoud, M., Minimax and Minimax Adaptive Estimation in Multiplicative Regression: Locally Bayesian Approach (2012) Probab. Theory Rel. Fields, 153 (3-4), pp. 543-586
  • [6] Delecroix, M., Hristache, M., M-estimateurs semi-parametriques dans les modèlesà direction révélatrice unique (1999) Bull. Belg. Math. Soc. Simon Stevin, 6 (2), pp. 161-185. , [Semiparametric M-Estimators in Single-Index Models]
  • [7] Delecroix, M., Hristache, M., Patilea, V., On Semiparametric M-Estimation in Single-Index Regression (2006) J. Statist. Plann. Inference, 136 (3), pp. 730-769
  • [8] Delyon, B., Juditsky, A., On Minimax Wavelet Estimators (1996) Appl. Comput. Harmon. Anal., 3 (3), pp. 215-228
  • [9] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D., Wawelet Shrinkage: Asymptopia? (with Discussion) (1995) J. Roy. Statist. Soc. Ser. B, 57, pp. 301-369
  • [10] Duan, N., Li, K.C., Slicing Regression: A Link-Free Regression Method (1991) Ann. Statist., 19 (2), pp. 505-530