Experimental study of shock-accelerated inclined heavy gas cylinder

被引:0
作者
Dell Olmstead
Patrick Wayne
Jae-Hwun Yoo
Sanjay Kumar
C. Randall Truman
Peter Vorobieff
机构
[1] University of New Mexico,Department of Mechanical Engineering
[2] Indian Institute of Technology,Department of Aerospace Engineering
来源
Experiments in Fluids | 2017年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by different rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. Highly repeatable experimental data are presented for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}, 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}, and 30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} for about 50 nominal cylinder diameters (30 cm) of downstream travel.
引用
收藏
相关论文
共 138 条
  • [1] Akula B(2017)Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability J Fluid Mech 816 619-660
  • [2] Suchandra P(2015)An experimental and numerical study of shock interaction with a gas column seeded with droplets Shock Waves 25 107-125
  • [3] Mikhaeil M(2000)The role of mixing in astrophysics Astrophys J Suppl Ser 127 213-217
  • [4] Ranjan D(2012)Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics J Fluid Mech 696 67-93
  • [5] Anderson M(2015)Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow J Fluids Eng 137 011206-4539
  • [6] Vorobieff P(1996)Experimental comparison of classical versus ablative Rayleigh–Taylor instability Phys Rev Lett 76 4536-14
  • [7] Truman C(2004)Spherical Richtmyer–Meshkov instability for axisymmetric flow Math. Comput. Simul. 65 417430-76
  • [8] Corbin C(2002)Code validation experiments Los Alamos Res Q Fall 2002 6-27
  • [9] Kuehner G(1987)Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities J Fluid Mech 181 41-2247
  • [10] Wayne P(1991)On the refraction of shock waves at a slow-fast gas interface J Fluid Mech 224 1-489