On the total mass of closed universes

被引:0
作者
László B. Szabados
机构
[1] Wigner Research Centre for Physics,
来源
General Relativity and Gravitation | 2013年 / 45卷
关键词
Total mass in GR; Closed universe; Positive energy theorems;
D O I
暂无
中图分类号
学科分类号
摘要
The total mass, the Witten type gauge conditions and the spectral properties of the Sen–Witten and the 3-surface twistor operators in closed universes are investigated. It has been proven that a recently suggested expression M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt{M}$$\end{document} for the total mass density of closed universes is vanishing if and only if the spacetime is flat with toroidal spatial topology; it coincides with the first eigenvalue of the Sen–Witten operator; and it is vanishing if and only if Witten’s gauge condition admits a non-trivial solution. Here we generalize slightly the result above on the zero-mass configurations: M=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt{M}=0$$\end{document} if and only if the spacetime is holonomically trivial with toroidal spatial topology. Also, we show that the multiplicity of the eigenvalues of the (square of the) Sen–Witten operator is even, and a potentially viable gauge condition is suggested. The monotonicity properties of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt{M}$$\end{document} through the examples of closed Bianchi I and IX cosmological spacetimes are also discussed. A potential spectral characterization of these cosmological spacetimes, in terms of the spectrum of the Riemannian Dirac operator and the Sen–Witten and the 3-surface twistor operators, is also indicated.
引用
收藏
页码:2325 / 2339
页数:14
相关论文
共 24 条
[1]  
Bondi H.(1962)Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems Proc. R. Soc. Lond. Ser. A 269 21-52
[2]  
Burg M.G.J.(1975)The alignment of frames of reference at null infinity for asymptotically flat Einstein–Maxwell manifolds Proc. R. Soc. Lond. Ser. A 341 451-461
[3]  
Metzner A.W.K.(1969)Conserved quantities in the Einstein–Maxwell theory J. Math. Phys. 10 1566-1570
[4]  
Bramson BD(1991)Triads and the Witten equation Class. Quantum Gravity 8 1881-1887
[5]  
Exton AR(1980)Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung Math. Nachr. 97 117-146
[6]  
Newman ET(2003)The Dirac–Witten operators on spacelike hypersurfaces Anal. Geom. 11 737-750
[7]  
Penrose R(1982)A relation between local and total energy in general relativity Commun. Math. Phys. 85 429-447
[8]  
Frauendiener J(1963)Spineurs harmoniques C. R. Acad. Sci. Paris A–B 257 7-9
[9]  
Friedrich T(1981)A new gravitational energy expression with a simple positivity proof Phys. Lett. A 83 241-42
[10]  
Hijazi O(1989)A gauge condition for orthonormal three-frames J. Math. Phys. 30 624-626