Fusing structural information with knowledge enhanced text representation for knowledge graph completion

被引:0
|
作者
Kang Tang
Shasha Li
Jintao Tang
Dong Li
Pancheng Wang
Ting Wang
机构
[1] National University of Defense Technology,College of Computer Science and Technology
来源
Data Mining and Knowledge Discovery | 2024年 / 38卷
关键词
Neural networks; Knowledge graphs; Knowledge graph completion;
D O I
暂无
中图分类号
学科分类号
摘要
Although knowledge graphs store a large number of facts in the form of triplets, they are still limited by incompleteness. Hence, Knowledge Graph Completion (KGC), defined as inferring missing entities or relations based on observed facts, has long been a fundamental issue for various knowledge driven downstream applications. Prevailing KG embedding methods for KGC like TransE rely solely on mining structural information of existing facts, thus failing to handle generalization issue as they are inapplicable to unseen entities. Recently, a series of researches employ pre-trained encoders to learn textual representation for triples i.e., textual-encoding methods. While exhibiting great generalization for unseen entities, they are still inferior compared with above KG embedding based ones. In this paper, we devise a novel textual-encoding learning framework for KGC. To enrich textual prior knowledge for more informative prediction, it features three hierarchical maskings which can utilize far contexts of input text so that textual prior knowledge can be elicited. Besides, to solve predictive ambiguity caused by improper relational modeling, a relational-aware structure learning scheme is applied based on textual embeddings. Extensive experimental results on several popular datasets suggest the effectiveness of our approach even compared with recent state-of-the-arts in this task.
引用
收藏
页码:1316 / 1333
页数:17
相关论文
共 50 条
  • [21] CombinE: A Fusion Method Enhanced Model for Knowledge Graph Completion
    Cui, Ziyuan
    Wang, Jinxin
    Guo, Zhongwen
    Wang, Weigang
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 383 - 388
  • [22] Active knowledge graph completion
    Omran, Pouya Ghiasnezhad
    Taylor, Kerry
    Mendez, Sergio Rodriguez
    Haller, Armin
    INFORMATION SCIENCES, 2022, 604 : 267 - 279
  • [23] A Review of Knowledge Graph Completion
    Zamini, Mohamad
    Reza, Hassan
    Rabiei, Minou
    INFORMATION, 2022, 13 (08)
  • [24] Concept-driven representation learning model for knowledge graph completion
    Xiang, Yan
    He, Hongguang
    Yu, Zhengtao
    Huang, Yuxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [25] Knowledge Graph Completion by Jointly Learning Structural Features and Soft Logical Rules
    Li, Weidong
    Peng, Rong
    Li, Zhi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2724 - 2735
  • [26] Dynamic Knowledge Graph Completion with Jointly Structural and Textual Dependency
    Xie, Wenhao
    Wang, Shuxin
    Wei, Yanzhi
    Zhao, Yonglin
    Fu, Xianghua
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 432 - 448
  • [27] Knowledge Graph Completion: A Review
    Chen, Zhe
    Wang, Yuehan
    Zhao, Bin
    Cheng, Jing
    Zhao, Xin
    Duan, Zongtao
    IEEE ACCESS, 2020, 8 (08): : 192435 - 192456
  • [28] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [29] Relation-enhanced Negative Sampling for Multimodal Knowledge Graph Completion
    Xu, Derong
    Xu, Tong
    Wu, Shiwei
    Zhou, Jingbo
    Chen, Enhong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3857 - 3866
  • [30] Geography-Enhanced Link Prediction Framework for Knowledge Graph Completion
    Wang, Yashen
    Zhang, Huanhuan
    Xie, Haiyong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 198 - 210