Transformation Properties of Hypergeometric Functions and Their Applications

被引:0
作者
Song-Liang Qiu
Xiao-Yan Ma
Yu-Ming Chu
机构
[1] Lishui University,Department of Mathematics
[2] Zhejiang Sci-Tech University,Department of Mathematics
[3] Huzhou University,Department of Mathematics
来源
Computational Methods and Function Theory | 2022年 / 22卷
关键词
Hypergeometric function; Transformation identity; Extension; Modular equation; Generalized Grötzsch ring function; Modular function; Inequality; 33C05; 33F05; 30C62; 11F03;
D O I
暂无
中图分类号
学科分类号
摘要
The authors present sharp transformation inequalities for the zero-balanced hypergeometric function 2F1(a,b;a+b;r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2F_1(a,b;a+b;r)$$\end{document} created by the transformations r↦x=[(1-r)/(1+2r)]3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto x=[(1-r)/(1+2r)]^3$$\end{document} and r↦1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto 1-x$$\end{document}, r↦u=(1/2)r(3+r)2(1+r)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto u=(1/2)r(3+r)^2(1+r)^{-3}$$\end{document} and r↦1-u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto 1-u$$\end{document}, r↦p=(27/2)r(1+r)4(1+4r+r2)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto p=(27/2)r(1+r)^4(1+4r+r^2)^{-3}$$\end{document} and r↦1-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\mapsto 1-p$$\end{document}, by showing the monotonicity properties of certain combinations in terms of hypergeometric functions and elementary functions, thus extending the transformation identities satisfied by 2F1(1/3,2/3;1;r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2F_1(1/3,2/3;1;r)$$\end{document} with these three pairs of transformations and substantively improving the related known results. With these results, some properties are obtained for the generalized Grötzsch ring functions and the modular functions appearing in Ramanujan’s modular equations. Some other properties of 2F1(a,b;c;r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2F_1(a,b;c;r)$$\end{document} are obtained, too.
引用
收藏
页码:323 / 366
页数:43
相关论文
共 69 条
[1]  
Anderson GD(1995)Inequalities for zero-balanced hypergeometric functions Trans. Am. Math. Soc. 347 1713-1723
[2]  
Barnard RW(2000)Generalized elliptic integrals and modular equations Pacific J. Math. 192 1-37
[3]  
Richards KC(2005)Landen-Type Inequality for Bessel Functions Computational Methods and Function Theory 5 373-379
[4]  
Vamanamurthy MK(1995)Ramanujan’s theories of elliptic functions to alternative bases Trans. Am. Math. Soc. 347 4163-4244
[5]  
Vuorinen M(1991)A cubic counterpart of Jacobi’s identity and the AGM Trans. Am. Math. Soc. 323 691-701
[6]  
Anderson GD(2012)On generalized complete elliptic integrals and modular functions Proc. Edinb Math. Soc. 55 591-611
[7]  
Qiu SL(2020)Monotonicity properties and bounds for the complete AIMS Math. 5 7071-7086
[8]  
Vamanamurthy MK(2014)-elliptic integrals Adv. Math. 252 227-259
[9]  
Vuorinen M(1997)Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications Mathematika 44 278-301
[10]  
Baricz A(2020)Asymptotic expansions and inequalities for hypergeometric functions Math. Inequal. Appl. 23 1391-1423