Quantum corrections to the quasinormal modes of the Schwarzschild black hole

被引:0
作者
Hao Chen
Hassan Hassanabadi
Bekir Can Lütfüoğlu
Zheng-Wen Long
机构
[1] Zunyi Normal University,School of Physics and Electronic Science
[2] Shahrood University of Technology,Faculty of Physics
[3] University of Hradec Králové,Department of Physics
[4] Guizhou University,College of Physics
来源
General Relativity and Gravitation | 2022年 / 54卷
关键词
Black hole; Extended uncertainty principle; Quasinormal modes; Scattering problem;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the minimum measurable momentum concepts associated with the quantum gravity effects acting on the large-scale dynamics of the universe, we study the quantum effect of the EUP on the Hawking evaporation of the black hole. The results show the quantum corrections may shorten the lifetime of the massive black hole. To verify the new EUP on the black hole stability, the scalar field and electromagnetic field are derived and the time evolution of the black hole is analyzed in terms of the time domain integration method, the quantum effect alters the oscillation and decay time of black hole. Furthermore, we use the WKB numerical approximation method to calculate the quasinormal mode frequencies and analyze the influence of the EUP parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} on the scattering problem. This shows that the EUP significantly increases the area of the total absorption cross-section of the black hole.
引用
收藏
相关论文
共 156 条
[1]  
Einstein A(1916)Die Grundlage der allgemeinen Relativit Ann. Phys. 49 769-undefined
[2]  
Israel W(1967)tstheorie Phys. Rev. 164 1776-undefined
[3]  
Carter B(1971)Event horizons in static vacuum space-times Phys. Rev. Lett. 26 331-undefined
[4]  
Hawking SW(1975)Axisymmetric black hole has only two degrees of freedom Commun. Math. Phys. 43 167-undefined
[5]  
Hawking SW(1974)Particle creation by black holes Nature 248 30-undefined
[6]  
Moderski R(2001)Black hole explosions? Phys. Rev. D 64 1834-undefined
[7]  
Rogatko M(2014)Late-time evolution of a self-interacting scalar field in the spacetime of dilaton black hole Gen. Relativ. Gravit. 46 329-undefined
[8]  
Fernando S(2002)Black holes in massive gravity: quasinormal modes of scalar perturbations Gen. Relativ. Gravit. 34 066-undefined
[9]  
Clark T(2020)Quasinormal modes of the electrically charged dilaton black hole J. Cosmol. Astropart. Phys. 07 936-undefined
[10]  
Konoplya RA(2019)A consistent model of non-singular Schwarzschild Black Hole in loop quantum gravity and its quasinormal modes Phys. Rev. D 99 L105-undefined