On LCD Negacyclic Codes over Finite Fields

被引:0
作者
Binbin Pang
Shixin Zhu
Zhonghua Sun
机构
[1] Hefei University of Technology,School of Mathematics
来源
Journal of Systems Science and Complexity | 2018年 / 31卷
关键词
LCD codes; MDS codes; negacyclic codes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deduces the structure of LCD negacyclic codes over the finite field Fq, where q is an odd prime power. Based on the study of q-cyclotomic cosets modulo 2n, the authors obtain the parameters of LCD negacyclic codes of lengths n=qℓ+12,qm−12(q−1)andqt⋅2τ−12(qt+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \frac{{{q^\ell } + 1}}{2},\frac{{{q^m} - 1}}{{2\left( {q - 1} \right)}}and\frac{{{q^{t \cdot {2^\tau }}} - 1}}{{2\left( {{q^t} + 1} \right)}}$$\end{document}, respectively. And many optimal codes are given. Moreover, the authors research two special classes of MDS LCD negacyclic codes of length n|q−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n|\frac{{q - 1}}{2}$$\end{document} and n|q+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n|\frac{{q + 1}}{2}$$\end{document}, respectively.
引用
收藏
页码:1065 / 1077
页数:12
相关论文
共 23 条
[1]  
Yang X(1994)The condition for a cyclic code to have a complementary dual Discrete Math 126 391-393
[2]  
Massey J L(2004)Linear codes with complementary duals meet the Gilbert-Varshamov bound Discrete Math 285 345-347
[3]  
Sendrier N(2016)On the construction of some LCD codes over finite fields Manila Journal of Science 9 67-82
[4]  
Lina E R J(2016)LCD cyclic codes over finite fields IEEE Transactions on Information Theory 63 4344-4356
[5]  
Nocon E G(2017)Two families of LCD BCH codes IEEE Transactions on Information Theory 63 5699-5717
[6]  
Ding C S(2016)Quasi-cyclic complementary dual codes Finite Fields and Their Applications 42 67-80
[7]  
Li C J(2007)On quantum and classical BCH codes IEEE Trans. Inf. Theory 53 1183-1188
[8]  
Li S X(2004)Cyclic and negacyclic codes over finite chain rings IEEE Trans. Inf. Theory 50 1728-1744
[9]  
Li S X(2001)The structure of 1-generator quasi-twisted codes and new linear codes Des. Codes Cryptogr 24 313-326
[10]  
Li C J(2014)On negacyclic MDS-convolutional codes Linear Algebra and Its Applications 448 85-96