Ricci–Bourguignon Soliton on Three-Dimensional Contact Metric Manifolds

被引:0
|
作者
Mohan Khatri
Jay Prakash Singh
机构
[1] Pachhunga University College,Department of Mathematics
[2] Central University of South Bihar,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2024年 / 21卷
关键词
Ricci–Bourguignon soliton; sasakian; lie group; contact metric manifolds; isometry; Primary 53C15; Secondary 53C20; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims to classify a certain type of three-dimensional complete non-Sasakian contact manifold with specific properties, namely Qξ=σξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\xi =\sigma \xi $$\end{document} and admitting Ricci–Bourguignon solitons. In the case of constant σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, the paper proves that if the potential vector field of the Ricci–Bourguignon soliton is orthogonal to the Reeb vector field, then the manifold is either Einstein or locally isometric to E(1, 1). Under a similar hypothesis, the paper shows that a (κ,μ,ϑ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\vartheta )$$\end{document}-contact metric manifold is locally isometric to E(1, 1). Finally, the paper considers the scenario where the potential vector is pointwise collinear with the Reeb vector field and presents some results.
引用
收藏
相关论文
共 50 条
  • [1] Ricci-Bourguignon Soliton on Three-Dimensional Contact Metric Manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [2] *-Ricci Solitons on Three-dimensional Normal Almost Contact Metric Manifolds
    Mandal, K.
    Makhal, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (02) : 189 - 194
  • [3] *-Ricci Solitons on Three-dimensional Normal Almost Contact Metric Manifolds
    K. Mandal
    S. Makhal
    Lobachevskii Journal of Mathematics, 2019, 40 : 189 - 194
  • [4] On K-contact metric manifolds satisfying an almost gradient Ricci-Bourguignon soliton
    Dey, Santu
    Suh, Young Jin
    REVIEWS IN MATHEMATICAL PHYSICS, 2025, 37 (02)
  • [5] Riemann and Ricci Bourguignon Solitons on Three-Dimensional Quasi-Sasakian Manifolds
    Sarkar, Avijit
    Halder, Suparna
    De, Uday Chand
    FILOMAT, 2022, 36 (18) : 6573 - 6584
  • [6] η -Ricci-Bourguignon solitons on three-dimensional (almost) coKähler manifolds
    Mandal, Tarak
    De, Uday Chand
    Sarkar, Avijit
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3638 - 3651
  • [7] Riemann and Ricci Bourguignon Solitons on Three-Dimensional Quasi-Sasakian Manifolds
    Sarkar, Avijit
    Halder, Suparna
    De, Uday Chand
    FILOMAT, 2022, 36 (19) : 6573 - 6584
  • [8] SOME RESULTS ON RICCI SOLITON ON CONTACT METRIC MANIFOLDS
    Pandey, Pankaj
    Sharma, Kamakshi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (03): : 473 - 486
  • [9] Homogeneity on three-dimensional contact metric manifolds
    G. Calvaruso
    D. Perrone
    L. Vanhecke
    Israel Journal of Mathematics, 1999, 114 : 301 - 321
  • [10] Homogeneity on three-dimensional contact metric manifolds
    Calvaruso, G
    Perrone, D
    Vanhecke, L
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 114 (1) : 301 - 321