Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity

被引:0
|
作者
Yidan Shang
Kiao Inthavong
机构
[1] RMIT University,School of Engineering
来源
Experimental and Computational Multiphase Flow | 2019年 / 1卷
关键词
particle exposure; nasal cavity; surface mapping; deposition enhancement factor;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the particle exposure characteristics in human respiratory airways plays important roles in assessing the therapeutic or toxic effects of inhaled particles. In this study, numerical modelling approach was used to investigate micron-sized particle deposition in an anatomically realistic human nasal cavity. Flow rate of 15 L/min representing typical normal breathing rate for an adult was adopted, and particles were passively released from the ambient air adjacent to the nostrils. Through introducing a surface mapping technique, the 3D nasal cavity was “unwrapped” into a 2D planar domain, which allows a complete visual coverage of the spatial particle deposition in the intricate nasal cavity. Furthermore, deposition enhancement factor was applied to extract regional deposition concentration intensity relative to background intensity of the whole nasal passage. Results show that micron particle exposure in the nasal cavity is closely associated with nasal anatomical shape, airflow dynamics, and particle inertia. Specifically, the main passage of the nasal cavity received high particle deposition dosage, especially for larger micron-sized particles due to increased particle inertia. The nasal vestibule exhibited limited particle filtration effect and most deposited particles in this region concentrated posteriorly.
引用
收藏
页码:109 / 115
页数:6
相关论文
共 50 条
  • [1] Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity
    Shang, Yidan
    Inthavong, Kiao
    EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2019, 1 (02) : 109 - 115
  • [3] Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities
    Shang, Yidan
    Dong, Jingliang
    Inthavong, Kiao
    Tu, Jiyuan
    INHALATION TOXICOLOGY, 2015, 27 (13) : 694 - 705
  • [4] Numerical simulation of particle deposition in the human nasal cavity
    V. L. Ganimedov
    M. I. Muchnaya
    Thermophysics and Aeromechanics, 2020, 27 : 303 - 312
  • [5] Numerical simulation of particle deposition in the human nasal cavity
    Ganimedov, V. L.
    Muchnaya, M. I.
    THERMOPHYSICS AND AEROMECHANICS, 2020, 27 (02) : 303 - 312
  • [6] Comparison of Micron and Nano Particle Deposition Patterns in a Realistic Human Nasal Cavity
    Inthavong, K.
    Wang, S. M.
    Wen, J.
    Tu, J. Y.
    Xue, C. L.
    13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3, 2009, 23 (1-3): : 1550 - +
  • [7] A numerical study of spray particle deposition in a human nasal cavity
    Inthavong, K.
    Tian, Z. F.
    Li, H. F.
    Tu, J. Y.
    Yang, W.
    Xue, C. L.
    Li, C. G.
    AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (11) : 1034 - U3
  • [8] Numerical study of the distribution of sprayed particle deposition in different human nasal cavity
    Issakhov, Alibek
    Abylkassymova, Aizhan
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024,
  • [9] The effect of nasal airway obstruction on the dispersion and deposition of inhaled volatile droplets in the human nasal cavity: A numerical study
    Tohidi, R.
    Sajadi, B.
    Ahmadi, G.
    JOURNAL OF AEROSOL SCIENCE, 2020, 150 (150)
  • [10] Numerical investigation of unsteady particle deposition in a realistic human nasal cavity during inhalation
    Gu, Xin
    Wen, Jian
    Wang, Mengmeng
    Jian, Guanping
    Zheng, Guoxi
    Wang, Simin
    EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2019, 1 (01) : 39 - 50