Continuity, deconfinement, and (super) Yang-Mills theory

被引:0
作者
Erich Poppitz
Thomas Schäfer
Mithat Ünsal
机构
[1] University of Toronto,Department of Physics
[2] North Carolina State University,Department of Physics
[3] San Francisco State University,Department of Physics and Astronomy
来源
Journal of High Energy Physics | / 2012卷
关键词
Solitons Monopoles and Instantons; Supersymmetric gauge theory; Confinement; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} $\end{document} as a function of the fermion mass m and the compactification scale L. This theory reduces to thermal pure gauge theory as m → ∞ and to circle-compactified (non-thermal) supersymmetric gluodynamics in the limit m → 0. In the m-L plane, there is a line of center-symmetry changing phase transitions. In the limit m → ∞, this transition takes place at Lc = 1/Tc, where Tc is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m = 0, the critical compactification scale Lc can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a transition that can be studied at weak coupling. The center-symmetry changing phase transition arises from the competition of perturbative contributions and monopole-instantons that destabilize the center, and topological molecules (neutral bions) that stabilize the center. The contribution of molecules can be computed using supersymmetry in the limit m = 0, and via the Bogomolnyi-Zinn-Justin (BZJ) prescription in non-supersymmetric gauge theory. Finally, we also give a detailed discussion of an issue that has not received proper attention in the context of N = 1 theories — the non-cancellation of nonzero-mode determinants around supersymmetric BPS and KK monopole-instanton backgrounds on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} $\end{document}. We explain why the non-cancellation is required for consistency with holomorphy and supersymmetry and perform an explicit calculation of the one-loop determinant ratio.
引用
收藏
相关论文
共 98 条
[1]  
Gross DJ(1981)QCD and Instantons at Finite Temperature Rev. Mod. Phys. 53 43-undefined
[2]  
Pisarski RD(1990)Higher Loop Contributions To Effective Potential Of Gauge Theory At High Temperature Phys. Lett. B 241 91-undefined
[3]  
Yaffe LG(1990)Hot Gluon Matter In A Constant A Z. Phys. C 47 291-undefined
[4]  
Belyaev V(1994) Background Nucl. Phys. B 420 637-undefined
[5]  
Enqvist K(2010)Constrained effective potential in hot QCD JHEP 08 030-undefined
[6]  
Kajantie K(1999)Large-N volume independence in conformal and confining gauge theories Phys. Rev. Lett. 82 3956-undefined
[7]  
Korthals Altes C(2002)Continuity of quark and hadron matter Phys. Rev. D 65 056013-undefined
[8]  
Ünsal M(1997)Complete high temperature expansions for one loop finite temperature effects Phys. Rev. D 56 3711-undefined
[9]  
Yaffe LG(1998)Monopoles and instantons on partially compactified D-branes Phys. Lett. B 435 389-undefined
[10]  
Schafer T(2009)Monopole constituents inside SU(N) calorons JHEP 03 027-undefined