Disconnected Equivariant Rational Homotopy Theory

被引:0
作者
Marek Golasiński
机构
[1] Nicholas Copernicus University,Faculty of Mathematics and Informatics
来源
Applied Categorical Structures | 2002年 / 10卷
关键词
closed model category; cofinite ; -category; equivariant ; -minimal model; Grothendieck construction; Hamiltonian group; linearly compact ; -module; system of differential graded complete algebras and simplicial sets;
D O I
暂无
中图分类号
学科分类号
摘要
We present a variant of the disconnected equivariant rational homotopy theory to complete the result shown in [8]. For a finite group G let O(G) be the category of its canonical orbits. We prove that the category O(G)∫-DGA∧Q of O(G)∫S-complete differential graded algebras over the rationals is a closed model category, where S runs over all O(G)-sets. Then, by means of the equivariant KS-minimal models, we show that the homotopy category of O(G)∫-DGA∧Q is equivalent to the rational homotopy category of G-nilpotent disconnected simplicial sets provided G is a finite Hamiltonian group.
引用
收藏
页码:23 / 33
页数:10
相关论文
共 14 条
[1]  
Dwyer W. G.(1984)Systems of fixed point set Topology 23 139-155
[2]  
Kan D. M. A. c. t. o. d. o. s. s.(1983)The rational homotopy theory of certain pathspaces with applications to geodesics Trans. Amer. Math. Soc. 277 275-284
[3]  
Elmendorf A. D.(1978)Injective models of Acta Math. 140 277-303
[4]  
Grove K.(1997)-disconnected simplicial sets Ann. Inst. Fourier 47 1491-1522
[5]  
Halperin S.(1998)Equivariant rational homotopy theory as a closed model category J. Pure Appl. Algebra 133 271-287
[6]  
Vigue-Pourrier M.(1991)Modéle minimal équivariant et formalité Trans. Amer. Math. Soc. 327 621-639
[7]  
Golasi´nski M.(1994)Model category structures in bifibred categories J. Pure Appl. Algebra 95 203-223
[8]  
Golasi´nski M.(1994)Formalizability of Illinois J. Math. 38 434-451
[9]  
Lambre T.(1982) modules and morphisms of Trans. Amer. Math. Soc. 274 509-532
[10]  
Roig A.(1984) algebras Astèrisque 113-114 312-337