Nonlinear degenerate elliptic equations and axially symmetric problems

被引:0
|
作者
Joachim von Below
Helmut Kaul
机构
[1] Université du Littoral,
[2] LANGAL,undefined
[3] Bâtiment Poincaré,undefined
[4] 50,undefined
[5] rue Ferdinand Buisson,undefined
[6] B.P. 699,undefined
[7] F-62228 Calais Cédex (France) ,undefined
[8] Mathematisches Institut,undefined
[9] Universität Tübingen,undefined
[10] Auf der Morgenstelle 10,undefined
[11] D-72076 Tübingen (Germany) ,undefined
来源
Calculus of Variations and Partial Differential Equations | 1998年 / 7卷
关键词
AMS Subject Classification:35J20; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We consider semilinear elliptic equations with a principal part degenerating on a boundary hyperplane. Weak existence, uniqueness and regularity of solutions are established by variational methods and by reduction to uniformly elliptic equations. An important application arises in the mathematical treatment of the rotating star problem in general relativity, where the axial symmetry admits the reduction of one of the Einstein equations to a problem of the above form on a meridian half plane.
引用
收藏
页码:41 / 51
页数:10
相关论文
共 50 条