Uncertainty Analysis and Optimization of Quasi-Zero Stiffness Air Suspension Based on Polynomial Chaos Method

被引:0
|
作者
Xing Xu
Huan Liu
Xinwei Jiang
Akolbire Vincent Atindana
机构
[1] Jiangsu University,Automotive Engineering Research Institute
关键词
Air suspension; Quasi-zero stiffness; Polynomial chaos; Uncertainty analysis; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
To improve the vibration isolation performance of suspensions, various new structural forms of suspensions have been proposed. However, there is uncertainty in these new structure suspensions, so the deterministic research cannot reflect the performance of the suspension under actual operating conditions. In this paper, a quasi-zero stiffness isolator is used in automotive suspensions to form a new suspension−quasi-zero stiffness air suspension (QZSAS). Due to the strong nonlinearity and structural complexity of quasi-zero stiffness suspensions, changes in structural parameters may cause dramatic changes in suspension performance, so it is of practical importance to study the effect of structural parameter uncertainty on the suspension performance. In order to solve this problem, three suspension structural parameters d0, L0 and Pc0 are selected as random variables, and the polynomial chaos expansion (PCE) theory is used to solve the suspension performance parameters. The sensitivity of the performance parameters to different structural parameters was discussed and analyzed in the frequency domain. Furthermore, a multi-objective optimization of the structural parameters d0, L0 and Pc0 of QZSAS was performed with the mean and variance of the root-mean-square (RMS) acceleration values as the optimization objectives. The optimization results show that there is an improvement of about 8%−10% in the mean value and about 40%−55% in the standard deviation of acceleration (RMS) values. This paper verifies the feasibility of the PCE method for solving the uncertainty problem of complex nonlinear systems, which provide a reference for the future structural design and optimization of such suspension systems.
引用
收藏
相关论文
共 50 条
  • [31] Design and Analysis of Electromagnetic Quasi-zero Stiffness Vibration Isolator
    Wang MengTong
    Su Pan
    Liu ShuYong
    Chai Kai
    Wang BoXiang
    Lu Jinfang
    Journal of Vibration Engineering & Technologies, 2023, 11 : 153 - 164
  • [32] On the analysis of an actual model of a quasi-zero stiffness vibration isolator
    Cheng, Chun
    Ma, Ran
    NONLINEAR DYNAMICS, 2024, 112 (21) : 18917 - 18929
  • [33] Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator
    Ngoc Yen Phuong Vo
    Thanh Danh Le
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [34] Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method
    Chen Y.
    Ma Y.
    Lan Q.
    Sun W.
    Shi Y.
    Yang T.
    Bai J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (08):
  • [35] Design of a Quasi-Zero Stiffness Vibration Isolation and Energy Harvesting Integrated Seat Suspension
    Tuo, Jiying
    Zheng, Sisi
    Chen, Xuehai
    Wang, Binhan
    Qi, Wenjie
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (03)
  • [36] Nonlinear mirrored-stiffness design method for quasi-zero stiffness vibration isolators
    Wang, Minghao
    Tian, Ruilan
    Zhang, Xiaolong
    Li, Shen
    Wang, Qiubao
    NONLINEAR DYNAMICS, 2024, 112 (20) : 17881 - 17905
  • [37] Topology optimization for metastructures with quasi-zero stiffness and snap-through features
    Lu, Yifu
    Luo, Quantian
    Tong, Liyong
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [38] The Design and Analysis of a Novel Passive Quasi-Zero Stiffness Vibration Isolator
    Xinghua Zhou
    Xiao Sun
    Dingxuan Zhao
    Xiao Yang
    Kehong Tang
    Journal of Vibration Engineering & Technologies, 2021, 9 : 225 - 245
  • [39] Design and Implementation of Magnetic Suspension Vibration Isolation Platform with Quasi-Zero Stiffness Based on Fuzzy PID Control
    Zhai M.
    Zhang B.
    Li X.
    Long Z.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (04): : 886 - 895
  • [40] Semi-active Inertial Suspension Control Strategy for Tanks and Armored Vehicles Based on Quasi-zero Stiffness
    Du, Fu
    Dong, Mingming
    Wang, Hujiang
    Zhao, Yanhui
    Zheng, Fengjie
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (09): : 2929 - 2935