Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin

被引:0
作者
Shreeya Baghel
M. P. Tripathi
Dhiraj Khalkho
Nadhir Al-Ansari
Aekesh Kumar
Ahmed Elbeltagi
机构
[1] CTAE MPUAT,Department of Soil and Water Engineering
[2] SVCAET and RS,Department of Soil and Water Engineering
[3] IGKV,Soil and Water Engineering, Department of Soil and Water Engineering
[4] SVCAET and RS,Department of Civil, Environmental and Natural Resources Engineering
[5] IGKV,Department of Soil and Water Conservation Engineering, College of Technology
[6] Lulea University of Technology,Agricultural Engineering Department, Faculty of Agriculture
[7] Govind Ballabh Pant University of Agriculture and Technology,undefined
[8] Mansoura University,undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Groundwater management requires a systematic approach since it is crucial to the long-term viability of livelihoods and regional economies all over the world. There is insufficient groundwater management and difficulties in storage plans as a result of increased population, fast urbanisation, and climate change, as well as unpredictability in rainfall frequency and intensity. Groundwater exploration using remote sensing (RS) data and geographic information system (GIS) has become a breakthrough in groundwater research, assisting in the assessment, monitoring, and conservation of groundwater resources. The study region is the Mand catchment of the Mahanadi basin, covering 5332.07 km2 and is located between 21°42′15.525″N and 23°4′19.746″N latitude and 82°50′54.503″E and 83°36′1.295″E longitude in Chhattisgarh, India. The research comprises the generation of thematic maps, delineation of groundwater potential zones and the recommendation of structures for efficiently and successfully recharging groundwater utilising RS and GIS. Groundwater Potential Zones (GPZs) were identified with nine thematic layers using RS, GIS, and the Multi-Criteria Decision Analysis (MCDA) method. Satty's Analytic Hierarchy Process (AHP) was used to rank the nine parameters that were chosen. The generated GPZs map indicated regions with very low, low to medium, medium to high, and very high groundwater potential encompassing 962.44 km2, 2019.92 km2, 969.19 km2, and 1380.42 km2 of the study region, respectively. The GPZs map was found to be very accurate when compared with the groundwater fluctuation map, and it is used to manage groundwater resources in the Mand catchment. The runoff of the study area can be accommodated by the computing subsurface storage capacity, which will raise groundwater levels in the low and low to medium GPZs. According to the study results, various groundwater recharge structures such as farm ponds, check dams and percolation tanks were suggested in appropriate locations of the Mand catchment to boost groundwater conditions and meet the shortage of water resources in agriculture and domestic use. This study demonstrates that the integration of GIS can provide an efficient and effective platform for convergent analysis of various data sets for groundwater management and planning.
引用
收藏
相关论文
共 278 条
[1]  
Taylor RG(2012)Groundwater and climate change Nat. Clim. Chang. 3 322-329
[2]  
Scanlon B(2019)Multi-criteria-based approach for optimal siting of artificial recharge structures through hydrological modeling Arab J. Geosci. 12 190-430
[3]  
Döll P(2010)Global depletion of groundwater resources Geophys. Res. Lett. 37 L20402-4131
[4]  
Rodell M(2016)Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and RS techniques Sustain. Water Resour. Manag. 2 419-959
[5]  
Van Beek R(2019)Predicting Groundwater Potential Zones in upper Thal Doab, Indus Basin through integrated use of RS and GIS techniques and groundwater flow modeling Arab. J. Geosci. 12 621-204
[6]  
Wada Y(2019)Development of recharge and conservation site suitability model for groundwater retrieval and evaluation of artificial recharge potential in a complex hydro-geological spring-fed river basin Arab J. Geosci. 12 589-294
[7]  
Kolanuvada SR(2019)Artificial recharge to groundwater using geospatial and groundwater modelling techniques in North Western Himalaya India. Arab J. Geosci. 12 774-4620
[8]  
Ponpandian KL(2017)Assessment of Groundwater Potential Zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal Appl. Water Sci. 7 4117-7
[9]  
Sankar S(2019)An integrated approach to delineate the Groundwater Potential Zones in Devdari watershed area of Akola district, Maharashtra, Central India Environ. Dev. Sustain. 96 935-2416
[10]  
Wada Y(2019)Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: A case study from eastern Himalayas, Namchi, South Sikkim Nat. Hazards 36 195-237