Dark energy and future singularity of the universe in Kaluza-Klein space time

被引:0
作者
G. C. Samnata
机构
[1] BITS-Pilani,Department of Mathematics
来源
Astrophysics and Space Science | 2014年 / 353卷
关键词
Dark energy; Future singularities; Kaluza-Klein metric;
D O I
暂无
中图分类号
学科分类号
摘要
The dark energy model with the equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathit{DE}} = {-} \rho_{\mathit{DE}} - A\rho_{\mathit{DE}}^{\alpha} $\end{document} is studied in Kaluza-Klein space time. The model comprises and provides realization of several types of singularities in different parameter regimes. We discuss the finite-time singularities into four classes and explicitly present the models which give rise to these singularities by assuming the form of the equation of state of dark energy. Also, we discussed the models in terms of the cosmological redshift and some observational parameters.
引用
收藏
页码:731 / 736
页数:5
相关论文
共 92 条
[1]  
Abdalla M.C.B.(2005)Zum Unitatsproblem der Physik Sitz Class. Quantum Gravity 22 209-undefined
[2]  
Nojiri S.(1999)undefined Phys. Lett. B 458 389-undefined
[3]  
Odintsov S.D.(2004)undefined Class. Quantum Gravity 21 1-undefined
[4]  
Armendariz-Picon C.(2003)undefined Nucl. Phys. B 660 17-undefined
[5]  
Damour T.(2003)undefined Astrophys. J. Suppl. Ser. 148 23-undefined
[6]  
Mukhanov V.(2002)undefined Phys. Rev. D 66 2479-undefined
[7]  
Barrow J.D.(2002)undefined Phys. Lett. B 535 807-undefined
[8]  
Bellini M.(2005)undefined Phys. Rev. D 71 497-undefined
[9]  
Bennett C.L.(2002)undefined Phys. Lett. B 545 1635-undefined
[10]  
Bento M.C.(2003)undefined Phys. Rev. Lett. 91 1823-undefined