Sign-changing solutions for Schrödinger–Bopp–Podolsky system with general nonlinearity

被引:0
作者
Qi Zhang
机构
[1] Shanxi University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Schrödinger–Bopp–Podolsky system; Sign-changing solutions; Invariant sets of descending flow; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the following Schrödinger–Bopp–Podolsky system is studied -Δu+V(x)u+ϕu=f(u),inR3,-Δϕ+a2Δ2ϕ=4πu2,inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+\phi u=f(u), &{}\mathrm{\ in\ } \mathbb {R}^3,\\ -\Delta \phi +a^2\Delta ^2\phi =4\pi u^2, &{}\mathrm{\ in\ }\mathbb {R}^3, \end{array}\right. } \end{aligned}$$\end{document}where a⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\geqslant 0$$\end{document}, under general assumptions of V and f, by using an abstract critical theorem, which derived from the minimax method and the method of invariant sets of descending flow, the existence of sign-changing solution for this system is obtained, in particular, a sequence of high energy sign-changing solutions is obtained if f is odd. Moreover, we also study the asymptotic behavior of the solution as a→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\rightarrow 0$$\end{document}, specifically, the sign-changing solution we find tends to the sign-changing solution of the classical Schrödinger–Poisson system as a→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\rightarrow 0$$\end{document}.
引用
收藏
相关论文
共 29 条
[1]  
Bartsch T(2004)On a superlinear elliptic J. Differ. Equ. 198 149-175
[2]  
Liu Z(2005)-Laplacian equation Proc. Lond. Math. Soc. (3) 91 129-152
[3]  
Bartsch T(2020)Nodal solutions of a Nonlinear Anal. 195 111734-1065
[4]  
Liu Z(2019)-Laplacian equation J. Differ. Equ. 267 1025-799
[5]  
Weth T(2016)On the critical Schrödinger–Bopp–Podolsky system with general nonlinearities J. Math. Anal. Appl. 435 783-586
[6]  
Chen S(2015)Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case Calc. Var. Partial Differ. Equ. 52 565-794
[7]  
Tang X(2016)Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in Ann. Mat. Pura Appl. (4) 195 775-3282
[8]  
d’Avenia P(2015)Multiple mixed states of nodal solutions for nonlinear Schrödinger systems Z. Angew. Math. Phys. 66 3267-390
[9]  
Siciliano G(2020)Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system Publ. Mat. 64 373-943
[10]  
Liang Z(2015)Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in Calc. Var. Partial Differ. Equ. 52 927-1974