Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs

被引:0
作者
Boris Klemz
Günter Rote
机构
[1] Universität Würzburg,Institut für Informatik
[2] Freie Universität Berlin,Institut für Informatik
来源
Algorithmica | 2022年 / 84卷
关键词
Graph algorithm; Induced matching; Chain cover; Convex bipartite graph; Certifying algorithm; Dynamic programming;
D O I
暂无
中图分类号
学科分类号
摘要
A bipartite graph G=(U,V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(U,V,E)$$\end{document} is convex if the vertices in V can be linearly ordered such that for each vertex u∈U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in U$$\end{document}, the neighbors of u are consecutive in the ordering of V. An induced matchingH of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and mweighted edges, an induced matching of maximum total weight can be computed in O(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+m)$$\end{document} time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex u∈U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in U$$\end{document} the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in O(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+m)$$\end{document} time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. https://doi.org/10.1016/j.tcs.2007.04.006). The weighted case has not been considered before.
引用
收藏
页码:1064 / 1080
页数:16
相关论文
共 49 条
  • [1] Asdre K(2007)NP-completeness results for some problems on subclasses of bipartite and chordal graphs Theor. Comput. Sci. 381 248-259
  • [2] Nikolopoulos SD(1976)Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms J. Comput. Syst. Sci. 13 335-379
  • [3] Booth KS(2007)The induced matching and chain subgraph cover problems for convex bipartite graphs Theor. Comput. Sci. 381 260-265
  • [4] Lueker GS(2008)Maximum induced matchings for chordal graphs in linear time Algorithmica 52 440-447
  • [5] Brandstädt A(1989)Induced matchings Discrete Appl. Math. 24 97-102
  • [6] Eschen EM(2003)Finding a maximum induced matching in weakly chordal graphs Discrete Math. 266 133-142
  • [7] Sritharan R(2003)Induced matchings in asteroidal triple-free graphs Discrete Appl. Math. 132 67-78
  • [8] Brandstädt A(1991)Covering the edges with consecutive sets J. Graph Theory 15 559-562
  • [9] Hoàng CT(2005)On the approximability of the maximum induced matching problem J. Discrete Algorithms 3 79-91
  • [10] Cameron K(1984)An Oper. Res. Lett. 3 31-34