Asymptotic syzygies of algebraic varieties

被引:0
作者
Lawrence Ein
Robert Lazarsfeld
机构
[1] University Illinois at Chicago,Department of Mathematics
[2] University of Michigan,Department of Mathematics
来源
Inventiones mathematicae | 2012年 / 190卷
关键词
Vector Bundle; Algebraic Variety; Smooth Projective Variety; Ample Divisor; Segre Variety;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the syzygies of a smooth projective variety as the positivity of the embedding line bundle grows. The main result asserts that the syzygy modules are non-zero in almost all degrees allowed by Castelnuovo–Mumford regularity. We also give an effective statement for Veronese varieties that we conjecture to be optimal.
引用
收藏
页码:603 / 646
页数:43
相关论文
共 37 条
[11]  
Lazarsfeld R.(1984)Koszul cohomology and the geometry of projective varieties, II J. Differ. Geom. 20 279-289
[12]  
Eisenbud D.(1988)Some results on the syzygies of finite sets and algebraic curves Compos. Math. 67 301-314
[13]  
Green M.(1985)On the projective normality of complete linear series on an algebraic curve Invent. Math. 83 73-90
[14]  
Hulek K.(2006)Syzygies, multigraded regularity and toric varieties Compos. Math. 142 1499-1506
[15]  
Popescu S.(2004)Multigraded Castelnuovo–Mumford regularity J. Reine Angew. Math. 571 179-212
[16]  
Eisenbud D.(1966)On the equations defining abelian varieties Invent. Math. 1 287-354
[17]  
Schreyer F.(2001)Syzygies of Veronese embeddings Compos. Math. 125 31-37
[18]  
Green M.(2000)Syzygies of abelian varieties J. Am. Math. Soc. 13 651-664
[19]  
Green M.(2004)A result on resolutions of Veronese embeddings Ann. Univ. Ferrara, Sez. 7 50 151-165
[20]  
Green M.(1986)Syzygies of canonical curves and special linear series Math. Ann. 275 105-137