A steepest descent algorithm for the computation of traveling dissipative solitons

被引:0
|
作者
Y. S. Choi
J. M. Connors
机构
[1] University of Connecticut,Department of Mathematics
来源
Japan Journal of Industrial and Applied Mathematics | 2020年 / 37卷
关键词
FitzHugh–Nagumo; Traveling wave; Traveling pulse; Dissipative solitons; Minimizer; Steepest descent; 65P30; 37L65;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is proposed to calculate traveling dissipative solitons for the FitzHugh–Nagumo equations. It is based on the application of the steepest descent method to a certain functional. This approach can be used to find solitons whenever the problem has a variational structure. Since the method seeks the lowest energy configuration, it has robust performance qualities. It is global in nature, so that initial guesses for both the pulse profile and the wave speed can be quite different from the correct solution. Also, bifurcations have a minimal effect on the performance. In the literature, there is a conjecture that no stable traveling pulse exists for a 2-component system in 2D unbounded domains. In many instances, such numerical studies investigate only solutions with a small speed, as they rely on good initial guesses based on stable standing pulse profiles. Studying a modified problem with a 2D strip domain R×[-L,L]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} \times [-L,L]$$\end{document} with zero Dirichlet boundary conditions at y=±L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=\pm L$$\end{document}, by using our algorithm we establish the existence of fast-moving solitons. With an appropriate set of physical parameters in this unbounded rectangular strip domain, we observe the co-existence of single-soliton and 2-soliton solutions together with additional unstable traveling pulses. The algorithm automatically calculates these various pulses as the energy minimizers at different wave speeds. In addition to finding individual solutions, we anticipate that this approach could be used to augment or initiate continuation algorithms. We also note that the rectangular strip domain can serve as a first step to investigating waves in the whole of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}.
引用
收藏
页码:131 / 163
页数:32
相关论文
共 50 条
  • [41] Improved front steepest descent for multi-objective optimization
    Lapucci, Matteo
    Mansueto, Pierluigi
    OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 242 - 247
  • [42] ON THE PATHS OF STEEPEST DESCENT FOR THE NORM OF A ONE VARIABLE COMPLEX POLYNOMIAL
    Roy, Damien
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4863 - 4869
  • [43] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 88 - 107
  • [44] An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    G. C. Bento
    J. X. da Cruz Neto
    P. S. M. Santos
    Journal of Optimization Theory and Applications, 2013, 159 : 108 - 124
  • [45] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    G. C. Bento
    O. P. Ferreira
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 2012, 154 : 88 - 107
  • [46] An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    da Cruz Neto, J. X.
    Santos, P. S. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 108 - 124
  • [47] Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method
    Marcos Raydan
    Benar F. Svaiter
    Computational Optimization and Applications, 2002, 21 : 155 - 167
  • [48] A new convergence rate of the steepest descent regarding the Euclidean norm
    Ribeiro, Ademir A.
    Silva, Tatiane C.
    Pericaro, Gislaine A.
    OPTIMIZATION LETTERS, 2024,
  • [49] A Deeply Fused Detection Algorithm Based on Steepest Descent and Non-Stationary Richardson Iteration for Massive MIMO Systems
    Lou, Mengdan
    Tu, Jiaming
    Shu, Dewu
    Abu Bakar, Muhammad
    He, Guanghui
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2742 - 2745
  • [50] Dissipative temporal solitons in a laser cavity
    Grelu, Ph.
    Grapinet, M.
    Soto-Crespo, J. M.
    Akhmediev, N.
    ICONO 2005: NONLINEAR SPACE-TIME DYNAMICS, 2006, 6255