Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions

被引:0
作者
Philip Jameson Graber
Irena Lasiecka
机构
[1] Commands (ENSTA ParisTech,Unité de Mathématiques Appliquées
[2] INRIA Saclay),Department of Mathematics
[3] University of Virginia,undefined
来源
Semigroup Forum | 2014年 / 88卷
关键词
Gevrey’s semigroups; Analytic semigroups; Wave equation with dynamic boundary conditions; Pseudodifferential operators;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a linear system of PDEs of the form 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} & \begin{aligned} u_{tt} - c\Delta u_t - \Delta u &= 0 \quad\text{in } \varOmega\times (0,T)\\ u_{tt} + \partial_n (u+cu_t) - \Delta_\varGamma(c \alpha u_t + u)& = 0 \quad\text{on } \varGamma_1 \times(0,T)\\ u &= 0 \quad\text{on } \varGamma_0 \times(0,T) \end{aligned} \\ &\quad (u(0),u_t(0),u|_{\varGamma_1}(0),u_t|_{\varGamma_1}(0)) \in {\mathcal{H}} \end{aligned}$$ \end{document} on a bounded domain Ω with boundary Γ=Γ1∪Γ0. We show that the system generates a strongly continuous semigroup T(t) which is analytic for α>0 and of Gevrey class for α=0. In both cases the flow exhibits a regularizing effect on the data. In particular, we prove quantitative time-smoothing estimates of the form ∥(d/dt)T(t)∥≲|t|−1 for α>0, ∥(d/dt)T(t)∥≲|t|−2 for α=0. Moreover, when α=0 we prove a novel result which shows that these estimates hold under relatively bounded perturbations up to 1/2 power of the generator.
引用
收藏
页码:333 / 365
页数:32
相关论文
共 50 条
[41]  
Triggiani R.(undefined)undefined undefined undefined undefined-undefined
[42]  
Yao P.(undefined)undefined undefined undefined undefined-undefined
[43]  
Lasiecka I.(undefined)undefined undefined undefined undefined-undefined
[44]  
Vazquez J.(undefined)undefined undefined undefined undefined-undefined
[45]  
Vitillaro E.(undefined)undefined undefined undefined undefined-undefined
[46]  
Xiao T.-J.(undefined)undefined undefined undefined undefined-undefined
[47]  
Liang J.(undefined)undefined undefined undefined undefined-undefined
[48]  
Xiao T.-J.(undefined)undefined undefined undefined undefined-undefined
[49]  
Liang J.(undefined)undefined undefined undefined undefined-undefined
[50]  
Yao P.-F.(undefined)undefined undefined undefined undefined-undefined