Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions

被引:0
作者
Philip Jameson Graber
Irena Lasiecka
机构
[1] Commands (ENSTA ParisTech,Unité de Mathématiques Appliquées
[2] INRIA Saclay),Department of Mathematics
[3] University of Virginia,undefined
来源
Semigroup Forum | 2014年 / 88卷
关键词
Gevrey’s semigroups; Analytic semigroups; Wave equation with dynamic boundary conditions; Pseudodifferential operators;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a linear system of PDEs of the form 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} & \begin{aligned} u_{tt} - c\Delta u_t - \Delta u &= 0 \quad\text{in } \varOmega\times (0,T)\\ u_{tt} + \partial_n (u+cu_t) - \Delta_\varGamma(c \alpha u_t + u)& = 0 \quad\text{on } \varGamma_1 \times(0,T)\\ u &= 0 \quad\text{on } \varGamma_0 \times(0,T) \end{aligned} \\ &\quad (u(0),u_t(0),u|_{\varGamma_1}(0),u_t|_{\varGamma_1}(0)) \in {\mathcal{H}} \end{aligned}$$ \end{document} on a bounded domain Ω with boundary Γ=Γ1∪Γ0. We show that the system generates a strongly continuous semigroup T(t) which is analytic for α>0 and of Gevrey class for α=0. In both cases the flow exhibits a regularizing effect on the data. In particular, we prove quantitative time-smoothing estimates of the form ∥(d/dt)T(t)∥≲|t|−1 for α>0, ∥(d/dt)T(t)∥≲|t|−2 for α=0. Moreover, when α=0 we prove a novel result which shows that these estimates hold under relatively bounded perturbations up to 1/2 power of the generator.
引用
收藏
页码:333 / 365
页数:32
相关论文
共 50 条
[1]  
Carvalho A.N.(2008)Strongly damped wave problems: bootstrapping and regularity of solutions J. Differ. Equ. 244 2310-2333
[2]  
Cholewa J.W.(2005)Decoupling techinques for wave equations with dynamic boundary conditions Discrete Contin. Dyn. Syst. 12 761-772
[3]  
Dlotko T.(1990)Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0< Proc. Am. Math. Soc. 110 401-415
[4]  
Casarino V.(1999)<1/2 Semigroup Forum 58 267-295
[5]  
Engel K.-J.(2002)Spectral theory and generator property for one-sided coupled operator matrices J. Evol. Equ. 2 1-19
[6]  
Nickel G.(2010)The heat equation with generalized Wentzell boundary conditions Math. Nachr. 283 504-521
[7]  
Piazzera S.(2003)Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem J. Evol. Equ. 3 623-635
[8]  
Chen S.P.(2011)Oscillatory boundary conditions for acoustic wave equations Nonlinear Anal., Theory Methods Appl. 74 7137-7150
[9]  
Triggiani R.(2006)Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions Adv. Differ. Equ. 11 457-480
[10]  
Engel K.-J.(2013)Derivation and physical interpretation of general boundary conditions Evol. Equ. Control Theory 2 101-117