Rate Optimality of Wavelet Series Approximations of Fractional Brownian Motion

被引:0
|
作者
Antoine Ayache
Murad S. Taqqu
机构
[1] Université Paul Sabatier,
[2] Toulouse,undefined
[3] Boston University,undefined
[4] Boston,undefined
关键词
Brownian Motion; Rate Optimality; Fractional Brownian Motion; Gaussian Random Variable; Motion Process;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the fractional Brownian motion process $B_H(t), t\in [0,T]$, with parameter $H\in (0,1)$. Meyer, Sellan and Taqqu have developed several random wavelet representations for $B_H(t)$, of the form $\sum_{k=0}^\infty U_k(t)\epsilon_k$ where $\epsilon_k$ are Gaussian random variables and where the functions $U_k$ are not random. Based on the results of Kühn and Linde, we say that the approximation $\sum_{k=0}^n U_k(t)\epsilon_k$ of $B_H(t)$ is optimal if $$ \displaystyle \left( E \sup_{t\in [0,T]} \left| \sum_{k=n}^\infty U_k(t) \epsilon_k\right|^2 \right)^{1/2} =O \left( n^{-H} (1+\log n)^{1/2} \right), $$ as $n\rightarrow\infty$. We show that the random wavelet representations given in Meyer, Sellan and Taqqu are optimal.
引用
收藏
页码:451 / 471
页数:20
相关论文
共 50 条