Generalized Unimodality and Subordinators, With Applications to Stable Laws and to the Mittag-Leffler Function

被引:0
作者
Safa Bridaa
Wissem Jedidi
Hristo Sendov
机构
[1] Université de Tunis El Manar,Laboratoire d’Analyse Mathématiques et Applications LR11ES11, Département de Mathématiques, Faculté des Sciences de Tunis
[2] King Saud University,Department of Statistics and Operations Research
[3] University of Western Ontario,Department of Statistical and Actuarial Sciences
来源
Journal of Theoretical Probability | 2024年 / 37卷
关键词
Bernstein function; Complete monotonicity; Generalized unimodality; Mittag-Leffler function; Positive stable distribution; Subordinators; Primary 26A48; 26D07; Secondary 30E20;
D O I
暂无
中图分类号
学科分类号
摘要
Using the differential operator Ωs:=sI-xddx,s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _s:=s\;I- x \frac{\textrm{d}}{\textrm{d}x}, \; s>0$$\end{document}, we build a new class of infinitely divisible distributions on the half-line. For this class, we give a stochastic interpretation and we provide several monotonicity properties for the associated subordinators. As an application, we solve a problem raised separately by Sendov and Shan in (J Theor Probab 28:1689–1725, 2015) and by Simon in (Math Nachr 285(4): 497–506, 2012) on the distribution of the stable subordinators. Finally, we provide a new complete monotonicity property for the Mittag-Leffler function.
引用
收藏
页码:1 / 42
页数:41
相关论文
共 13 条
[11]  
Sendov H(undefined)undefined undefined undefined undefined-undefined
[12]  
Shan S(undefined)undefined undefined undefined undefined-undefined
[13]  
Simon T(undefined)undefined undefined undefined undefined-undefined