Generalized Unimodality and Subordinators, With Applications to Stable Laws and to the Mittag-Leffler Function

被引:0
作者
Safa Bridaa
Wissem Jedidi
Hristo Sendov
机构
[1] Université de Tunis El Manar,Laboratoire d’Analyse Mathématiques et Applications LR11ES11, Département de Mathématiques, Faculté des Sciences de Tunis
[2] King Saud University,Department of Statistics and Operations Research
[3] University of Western Ontario,Department of Statistical and Actuarial Sciences
来源
Journal of Theoretical Probability | 2024年 / 37卷
关键词
Bernstein function; Complete monotonicity; Generalized unimodality; Mittag-Leffler function; Positive stable distribution; Subordinators; Primary 26A48; 26D07; Secondary 30E20;
D O I
暂无
中图分类号
学科分类号
摘要
Using the differential operator Ωs:=sI-xddx,s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _s:=s\;I- x \frac{\textrm{d}}{\textrm{d}x}, \; s>0$$\end{document}, we build a new class of infinitely divisible distributions on the half-line. For this class, we give a stochastic interpretation and we provide several monotonicity properties for the associated subordinators. As an application, we solve a problem raised separately by Sendov and Shan in (J Theor Probab 28:1689–1725, 2015) and by Simon in (Math Nachr 285(4): 497–506, 2012) on the distribution of the stable subordinators. Finally, we provide a new complete monotonicity property for the Mittag-Leffler function.
引用
收藏
页码:1 / 42
页数:41
相关论文
共 13 条
[1]  
Basalim K(2020)Three classes of decomposable distributions Open Math. 18 1855-1878
[2]  
Bridaa S(2008)Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples Probab. Surv. 5 346-415
[3]  
Jedidi W(2009)Stable processes, mixing, and distributional properties. II Theory Probab. Appl. 53 81-105
[4]  
James LF(1970)A generalized unimodality J. Appl. Probab. 7 21-34
[5]  
Roynette B(1997)Characterization by invariance under length-biasing and random scaling J. Stat. Plan. Inf. 63 285-310
[6]  
Yor M(2015)New representation theorems for completely monotone and Bernstein functions with convexity properties on their measures J. Theor. Probab. 28 1689-1725
[7]  
Jedidi W(2012)On the unimodality of power transformations of positive stable densities Math. Nachr. 285 497-506
[8]  
Olshen RA(undefined)undefined undefined undefined undefined-undefined
[9]  
Savage LJ(undefined)undefined undefined undefined undefined-undefined
[10]  
Pakes AG(undefined)undefined undefined undefined undefined-undefined