The ability of a protostellar disc to fragment and the properties of molecular cloud cores

被引:0
|
作者
Chunjian Liu
Min Li
Zhen Yao
Xiaodong Mao
机构
[1] Bohai University,College of Mathematics and Physics
[2] Liaoning University of Technology,College of Science
[3] Jilin University,College of Physics
来源
Astrophysics and Space Science | 2017年 / 362卷
关键词
Planets and satellites: formation; Hydrodynamics; Instabilities; Protostellar discs;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the ability of a protostellar disc to fragment using an evolutionary disc model. Our disc model includes the mass influx from a molecular cloud core, the irradiation from the central star, the magnetorotational instability (MRI), and the gravitational instability (Kratter et al. in Astrophys. J. 681:375, 2008). We use the fragmentation criterion of Gammie (Astrophys. J. 553:174, 2001) and Rafikov (Astrophys. J. 621:L69, 2005) to judge whether or not a protostellar disc can fragment. We find that there is a link between whether a protostellar disc can fragment and the properties of the molecular cloud cores (angular velocity ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega$\end{document}, temperature Tcore\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{core}}$\end{document}, and mass Mcore\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{\mathrm{core}}$\end{document}). In the parameter space ω−Mcore\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega-M_{\mathrm{core}}$\end{document}, there is a critical value ωcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega_{\mathrm{crit}}$\end{document}, which divides the parameter space into two regions: one is the fragmentation region, the other is the non-fragmentation region. The protostellar disc can only fragment when ω>ωcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega> \omega_{\mathrm{crit}}$\end{document}. The reason can be understood as follows. The protostellar disc is formed from the gravitational collapse of a molecular cloud core, the properties of the molecular cloud core determine the properties of the protostellar disc. Thus the two categories of protostellar discs correspond to two categories of molecular cloud cores. Moreover, we find that ωcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega_{\mathrm{crit}}$\end{document} is approximately a linear function of Mcore\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{\mathrm{core}}$\end{document} in log-scale coordinates.
引用
收藏
相关论文
共 50 条
  • [1] The ability of a protostellar disc to fragment and the properties of molecular cloud cores
    Liu, Chunjian
    Li, Min
    Yao, Zhen
    Mao, Xiaodong
    ASTROPHYSICS AND SPACE SCIENCE, 2017, 362 (01)
  • [2] Protostellar collapse models of prolate molecular cloud cores
    Sigalotti, LD
    Klapp, J
    ASTRONOMY & ASTROPHYSICS, 2001, 378 (01): : 165 - 179
  • [3] Molecular line study of evolution in protostellar cloud cores
    Kontinen, S
    Harju, J
    Heikkilä, A
    Haikala, LK
    ASTRONOMY & ASTROPHYSICS, 2000, 361 (02) : 704 - 718
  • [4] The formation of protostellar disks in magnetized cloud cores
    Basu, S
    ACCRETION PROCESSES IN ASTROPHYSICAL SYSTEMS: SOME LIKE IT HOT!, 1998, (431): : 505 - 508
  • [5] Formation of Unipolar Outflow and Protostellar Rocket Effect in Magnetized Turbulent Molecular Cloud Cores
    Takaishi, Daisuke
    Tsukamoto, Yusuke
    Kido, Miyu
    Takakuwa, Shigehisa
    Misugi, Yoshiaki
    Kudoh, Yuki
    Suto, Yasushi
    ASTROPHYSICAL JOURNAL, 2024, 963 (01):
  • [6] Variable protostellar mass accretion rates in cloud cores
    Gao, Yang
    Lou, Yu-Qing
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (01) : L53 - L57
  • [7] The detection of protostellar condensations in infrared dark cloud cores
    Rathborne, J. M.
    Simon, R.
    Jackson, J. M.
    ASTROPHYSICAL JOURNAL, 2007, 662 (02): : 1082 - 1092
  • [8] Properties of Contracting Massive Protostellar Cores
    Pirogov, L. E.
    Zemlyanukha, P. M.
    Dombek, E. M.
    ASTRONOMY REPORTS, 2024, 68 (12) : 1390 - 1405
  • [9] Turbulent molecular cloud cores: Rotational properties
    Burkert, A
    Bodenheimer, P
    ASTROPHYSICAL JOURNAL, 2000, 543 (02): : 822 - 830
  • [10] Molecular evolution and star formation: From prestellar cores to protostellar cores
    Aikawa, Yuri
    Wakelam, Valentine
    Garrod, Robin T.
    Herbst, Eric
    ASTROPHYSICAL JOURNAL, 2008, 674 (02): : 984 - 996