On the bounds of eigenvalues of matrix polynomials

被引:0
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 50 条
[41]   Some upper bounds on the eigenvalues of uniform hypergraphs [J].
Yuan, Xiying ;
Zhang, Man ;
Lu, Mei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 484 :540-549
[42]   Some Results on the Bounds of Signless Laplacian Eigenvalues [J].
Li, Shuchao ;
Tian, Yi .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) :131-141
[43]   Some Results on the Bounds of Signless Laplacian Eigenvalues [J].
Shuchao Li ;
Yi Tian .
Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 :131-141
[44]   Bounds and inequalities for Lm extremal polynomials [J].
Shi, YG .
JOURNAL OF APPROXIMATION THEORY, 2002, 115 (01) :167-185
[45]   Bounds on Orthonormal Polynomials for Restricted Measures [J].
Lubinsky, D. S. .
CONSTRUCTIVE APPROXIMATION, 2025, 61 (03) :615-645
[46]   DEFINITE MATRIX POLYNOMIALS AND THEIR LINEARIZATION BY DEFINITE PENCILS [J].
Higham, Nicholas J. ;
Mackey, D. Steven ;
Tisseur, Francoise .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :478-502
[48]   Stability of matrix polynomials in one and several variables [J].
Szymanski, Oskar Jakub ;
Wojtylak, Michal .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 :42-67
[49]   The Chebyshev polynomials of a matrix [J].
Toh, KC ;
Trefethen, LN .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :400-419
[50]   Estimates for lower order eigenvalues of quadratic polynomials of the Laplacian [J].
Ma, Bingqing ;
Zhang, Jing .
ARCHIV DER MATHEMATIK, 2012, 98 (05) :477-486