On the bounds of eigenvalues of matrix polynomials

被引:0
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 50 条
[21]   EIGENVALUE BOUNDS FOR MATRIX POLYNOMIALS IN GENERALIZED BASES [J].
Melman, A. .
MATHEMATICS OF COMPUTATION, 2018, 87 (312) :1935-1948
[22]   CONDITIONING AND BACKWARD ERRORS OF EIGENVALUES OF HOMOGENEOUS MATRIX POLYNOMIALS UNDER MOBIUS TRANSFORMATIONS [J].
Miguel Anguas, Luis ;
Bueno, Maria Isabel ;
Dopico, Froilan M. .
MATHEMATICS OF COMPUTATION, 2020, 89 (322) :767-805
[23]   On the distance from a matrix polynomial to matrix polynomials with k prescribed distinct eigenvalues [J].
Kokabifar, E. ;
Loghmani, G. B. ;
Psarrakos, P. J. ;
Karbassi, S. M. .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04) :658-676
[24]   FAST AND BACKWARD STABLE COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF MATRIX POLYNOMIALS [J].
Aurentz, Jared ;
Mach, Thomas ;
Robol, Leonardo ;
Vandebril, Raf ;
Watkins, David S. .
MATHEMATICS OF COMPUTATION, 2019, 88 (315) :313-347
[25]   Bounds for the Zeros of Polynomials from Compression Matrix Inequalities [J].
Kittaneh, Fuad ;
Odeh, Mohammad ;
Shebrawi, Khalid .
FILOMAT, 2020, 34 (03) :1035-1051
[26]   Polynomial eigenvalue bounds from companion matrix polynomials [J].
Melman, A. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) :598-612
[27]   Bounds for Aα-eigenvalues [J].
da Silva Jr, Joao Domingos Gomes ;
Oliveira, Carla Silva ;
da Costa, Liliana Manuela G. C. .
RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) :2783-2798
[28]   Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems [J].
Chu, EKW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :551-573
[29]   Annulus containing all the eigenvalues of a matrix polynomial [J].
Hans, Sunil ;
Raouafi, Samir .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02) :405-412
[30]   Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification [J].
Al-Ammari, Maha ;
Tisseur, Francoise .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :3954-3973