On the bounds of eigenvalues of matrix polynomials

被引:0
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 50 条
  • [21] Pseudospectra, critical points and multiple eigenvalues of matrix polynomials
    Ahmad, Sk. Safique
    Alam, Rafikul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1171 - 1195
  • [22] CONDITIONING AND BACKWARD ERRORS OF EIGENVALUES OF HOMOGENEOUS MATRIX POLYNOMIALS UNDER MOBIUS TRANSFORMATIONS
    Miguel Anguas, Luis
    Bueno, Maria Isabel
    Dopico, Froilan M.
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 767 - 805
  • [23] On the distance from a matrix polynomial to matrix polynomials with k prescribed distinct eigenvalues
    Kokabifar, E.
    Loghmani, G. B.
    Psarrakos, P. J.
    Karbassi, S. M.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04) : 658 - 676
  • [24] FAST AND BACKWARD STABLE COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF MATRIX POLYNOMIALS
    Aurentz, Jared
    Mach, Thomas
    Robol, Leonardo
    Vandebril, Raf
    Watkins, David S.
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 313 - 347
  • [25] Bounds for the Zeros of Polynomials from Compression Matrix Inequalities
    Kittaneh, Fuad
    Odeh, Mohammad
    Shebrawi, Khalid
    FILOMAT, 2020, 34 (03) : 1035 - 1051
  • [27] Bounds for Aα-eigenvalues
    da Silva Jr, Joao Domingos Gomes
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G. C.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2783 - 2798
  • [28] Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems
    Chu, EKW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 551 - 573
  • [29] Annulus containing all the eigenvalues of a matrix polynomial
    Hans, Sunil
    Raouafi, Samir
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02) : 405 - 412
  • [30] Bounds on the eigenvalues of systems with delay
    Verriest, Erik I.
    IFAC PAPERSONLINE, 2023, 56 (02): : 911 - +