On the bounds of eigenvalues of matrix polynomials

被引:0
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 50 条
[11]   TROPICAL ROOTS AS APPROXIMATIONS TO EIGENVALUES OF MATRIX POLYNOMIALS [J].
Noferini, Vanni ;
Sharify, Meisam ;
Tisseur, Francoise .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) :138-157
[12]   GERSHGORIN TYPE SETS FOR EIGENVALUES OF MATRIX POLYNOMIALS [J].
Michailidou, Christina ;
Psarrakos, Panayiotis .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 :652-674
[13]   Matrix polynomials with specified eigenvalues [J].
Karow, Michael ;
Mengi, Emre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 :457-482
[14]   SPECTRAL BOUNDS FOR MATRIX POLYNOMIALS WITH UNITARY COEFFICIENTS [J].
Cameron, Thomas R. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 :585-591
[15]   Bound estimates of the eigenvalues of matrix polynomials [J].
Monga, Z. B. ;
Shah, W. M. .
JOURNAL OF ANALYSIS, 2023, 31 (04) :2973-2983
[16]   Bound estimates of the eigenvalues of matrix polynomials [J].
Z. B. Monga ;
W. M. Shah .
The Journal of Analysis, 2023, 31 (4) :2973-2983
[17]   Location of Right Eigenvalues of Quaternionic Matrix Polynomials [J].
Ali, Istkhar ;
Truhar, Ninoslav .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
[18]   RIGOROUS PERTURBATION BOUNDS FOR EIGENVALUES AND EIGENVECTORS OF A MATRIX [J].
DEIF, AS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (03) :403-412
[19]   On the distance from a matrix polynomial to matrix polynomials with some prescribed eigenvalues [J].
Kokabifar, E. ;
Psarrakos, P. J. ;
Loghmani, G. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 :158-185
[20]   Pseudospectra, critical points and multiple eigenvalues of matrix polynomials [J].
Ahmad, Sk. Safique ;
Alam, Rafikul .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) :1171-1195