On the bounds of eigenvalues of matrix polynomials

被引:0
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 10 条
[1]  
Aziz A(2006)Estimates for the modulii of the zeros of a polynomial Mathematical Inequalities and Applications 9 107-116
[2]  
Qayoom A(2019)On the location of eigenvalues of matrix polynomials Operators and Matrices 13 937-954
[3]  
Le Cong-Trinh(2006)On the location of the zeros of complex polynomials Journal of Inequalities in Pure and Applied Mathematics 7 1-1897
[4]  
Thi-Hao-Binh Du(2006)On the numerical solution of SIAM Journal on Scientific Computing 23 1875-208
[5]  
Nguyen Tran-Duc(2001) and applications to structural dynamics SIAM Journal on Matrix Analysis and Applications 23 187-undefined
[6]  
Dehmer M(undefined)Structured pseudospectra for polynomial eigenvalue problems, with applications undefined undefined undefined-undefined
[7]  
Simoncini V(undefined)undefined undefined undefined undefined-undefined
[8]  
Perotti F(undefined)undefined undefined undefined undefined-undefined
[9]  
Tisseur F(undefined)undefined undefined undefined undefined-undefined
[10]  
Higham NJ(undefined)undefined undefined undefined undefined-undefined