Common fixed points of two maps in cone metric spaces

被引:47
作者
Azam A. [1 ,3 ]
Arshad M. [1 ]
Beg I. [2 ]
机构
[1] Department of Mathematics, Faculty of Basic and Applied Sciences, International Islamic University
[2] Department of Mathematics, F.G. Postgraduate College
[3] Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences
关键词
Common fixed point; Commuting mapping; Compatible mapping; Cone metric space; Contractive type mapping; Point of coincidence;
D O I
10.1007/s12215-008-0032-5
中图分类号
学科分类号
摘要
We prove the existence of points of coincidence and common fixed points of a pair of self-mappings satisfying a generalized contractive condition in cone metric spaces. Our results generalize several well-known recent and classical results. © 2008 Springer-Verlag Italia.
引用
收藏
页码:433 / 441
页数:8
相关论文
共 13 条
[1]  
Abbas M., Jungck G., Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341, pp. 416-420, (2008)
[2]  
Hardy G.E., Roggers T.D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16, 2, pp. 201-206, (1973)
[3]  
Huang L.G., Zhang X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332, pp. 1468-1476, (2007)
[4]  
Ilic D., Rakocevic V., Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341, pp. 876-882, (2008)
[5]  
Jungck G., Commuting maps and fixed points, Amer. Math.Monthly, 83, pp. 261-263, (1976)
[6]  
Jungck G., Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103, pp. 977-983, (1988)
[7]  
Jungck G., Rhoades B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29, 3, pp. 227-238, (1998)
[8]  
Pant R.P., Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188, pp. 436-440, (1994)
[9]  
Rezapour S., Hamlbarani R., Some notes on paper Cone metric spaces and fixed point theorems of contractive mappings., J. Math. Anal. Appl., 345, pp. 719-724, (2008)
[10]  
Reich S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14, 2, pp. 121-124, (1971)