Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

被引:0
作者
B. P. Abbott
R. Abbott
T. D. Abbott
S. Abraham
F. Acernese
K. Ackley
C. Adams
V. B. Adya
C. Affeldt
M. Agathos
K. Agatsuma
N. Aggarwal
O. D. Aguiar
L. Aiello
A. Ain
P. Ajith
T. Akutsu
G. Allen
A. Allocca
M. A. Aloy
P. A. Altin
A. Amato
A. Ananyeva
S. B. Anderson
W. G. Anderson
M. Ando
S. V. Angelova
S. Antier
S. Appert
K. Arai
Koya Arai
Y. Arai
S. Araki
A. Araya
M. C. Araya
J. S. Areeda
M. Arène
N. Aritomi
N. Arnaud
K. G. Arun
S. Ascenzi
G. Ashton
Y. Aso
S. M. Aston
P. Astone
F. Aubin
P. Aufmuth
K. AultONeal
C. Austin
V. Avendano
机构
[1] California Institute of Technology,LIGO
[2] Louisiana State University,INFN, Sezione di Napoli
[3] Inter-University Centre for Astronomy and Astrophysics,OzGrav, School of Physics and Astronomy
[4] Università di Salerno,LIGO
[5] Complesso Universitario di Monte S.Angelo,INFN
[6] Monash University,International Centre for Theoretical Sciences
[7] LIGO Livingston Observatory,NCSA
[8] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),INFN
[9] Leibniz Universität Hannover,Departamento de Astronomía y Astrofísica
[10] University of Cambridge,OzGrav
[11] University of Birmingham,Laboratoire des Matériaux Avancés (LMA)
[12] Massachusetts Institute of Technology,Department of Physics
[13] Instituto Nacional de Pesquisas Espaciais,Research Center for the Early Universe (RESCEU)
[14] Gran Sasso Science Institute (GSSI),SUPA
[15] Laboratori Nazionali del Gran Sasso,LAL, Univ. Paris
[16] Tata Institute of Fundamental Research,Sud, CNRS/IN2P3
[17] National Astronomical Observatory of Japan (NAOJ),Institute for Cosmic Ray Research (ICRR)
[18] University of Illinois at Urbana-Champaign,Accelerator Laboratory
[19] Università di Pisa,Earthquake Research Institute
[20] Sezione di Pisa,APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris
[21] Universitat de València,INFN
[22] Australian National University,INFN
[23] CNRS/IN2P3,Laboratoire d’Annecy de Physique des Particules (LAPP), CNRS/IN2P3
[24] University of Wisconsin-Milwaukee,Graduate School of Science
[25] The University of Tokyo,School of High Energy Accelerator Science
[26] The University of Tokyo,INFN
[27] University of Strathclyde,University of Minnesota
[28] Université Paris-Saclay,SUPA
[29] The University of Tokyo,Università di Camerino
[30] High Energy Accelerator Research Organization (KEK),Dipartimento di Fisica e Astronomia
[31] The University of Tokyo,INFN
[32] California State University Fullerton,Nicolaus Copernicus Astronomical Center
[33] Sorbonne Paris Cité,OzGrav
[34] European Gravitational Observatory (EGO),Theoretisch
[35] Chennai Mathematical Institute,Physikalisches Institut
[36] Università di Roma Tor Vergata,INFN, Sezione di Milano Bicocca
[37] Sezione di Roma Tor Vergata,Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
[38] National Astronomical Observatory of Japan (NAOJ),INFN
[39] Kamioka Branch,Faculty of Physics
[40] The Graduate University for Advanced Studies (SOKENDAI),OzGrav
[41] Sezione di Roma,Department of Astrophysics/IMAPP
[42] Univ. Grenoble Alpes,Artemis, Observatoire Côte d’Azur, CNRS
[43] Université Savoie Mont Blanc,Physik
[44] Embry-Riddle Aeronautical University,Institut
[45] Montclair State University,Univ Rennes, CNRS
[46] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Laboratoire Kastler Brossel, Sorbonne Université, CNRS,ENS
[47] Nikhef,Université PSL
[48] Korea Institute of Science and Technology Information (KISTI),INFN
[49] National Institute for Mathematical Sciences,School of Physics
[50] Osaka University,Università di Napoli ’Federico II’
来源
Living Reviews in Relativity | 2020年 / 23卷
关键词
Gravitational waves; Gravitational-wave detectors; Electromagnetic counterparts; Data analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105,106,107Mpc3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$\end{document} for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^{+12}_{-1}$$\end{document}(10-10+52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{+52}_{-10}$$\end{document}) for binary neutron star mergers, of 0-0+19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0^{+19}_{-0}$$\end{document}(1-1+91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^{+91}_{-1}$$\end{document}) for neutron star–black hole mergers, and 17-11+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17^{+22}_{-11}$$\end{document}(79-44+89\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$79^{+89}_{-44}$$\end{document}) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
引用
收藏
相关论文
共 50 条
[41]   Advanced quantum techniques for future gravitational-wave detectors [J].
Danilishin, Stefan L. ;
Khalili, Farid Ya. ;
Miao, Haixing .
LIVING REVIEWS IN RELATIVITY, 2019, 22 (1)
[42]   Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run [J].
Abbott, R. ;
Abe, H. ;
Acernese, F. ;
Ackley, K. ;
Adhikari, N. ;
Adhikari, R. X. ;
Adkins, V. K. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Albanesi, S. ;
Alfaidi, R. A. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, C. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Andrade, T. ;
Andres, N. ;
Andres-Carcasona, M. ;
Andric, T. ;
Angelova, S. V. ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Apostolatos, T. ;
Appavuravther, E. Z. ;
Appert, S. ;
Apple, S. K. ;
Arai, K. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arogeti, M. ;
Aronson, S. M. .
PHYSICAL REVIEW LETTERS, 2022, 129 (06)
[43]   Bayesian inference analysis of unmodelled gravitational-wave transients [J].
Pannarale, Francesco ;
Macas, Ronaldas ;
Sutton, Patrick J. .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (03)
[44]   Prospects for improving the sensitivity of KAGRA gravitational wave detector [J].
Michimura, Yuta ;
Ando, Masaki ;
Capocasa, Eleonora ;
Enomoto, Yutaro ;
Flaminio, Raffaele ;
Haino, Sadakazu ;
Hayama, Kazuhiro ;
Hirose, Eiichi ;
Itoh, Yousuke ;
Kinugawa, Tomoya ;
Komori, Kentro ;
Leonardi, Matteo ;
Mio, Norikatsu ;
Nagano, Koji ;
Nakano, Hiroyuki ;
Nishizawa, Atsushi ;
Sago, Norichika ;
Shibata, Masaru ;
Shinkai, Hisaaki ;
Somiya, Kentaro ;
Takeda, Hiroki ;
Tanaka, Takahiro ;
Tanioka, Satoshi ;
Wei, Li-Wei ;
Yamamoto, Kazuhiro .
15TH MARCEL GROSSMANN MEETING, PT A, 2022, :1599-1605
[45]   Nonlinear optical effects in the LIGO gravitational-wave interferometer [J].
Willems, P .
TOPICAL PROBLEMS OF NONLINEAR WAVE PHYSICS, 2006, 5975
[46]   The X-ray binaries in M83: Will any of them form gravitational wave sources for LIGO-VIRGO-KAGRA? [J].
Kotko, I. ;
Belczynski, K. .
ASTRONOMY & ASTROPHYSICS, 2024, 683
[47]   Detecting Gravitational Waves with Advanced Virgo [J].
Nardecchia, Ilaria .
GALAXIES, 2022, 10 (01)
[48]   Constraining the gravitational-wave spectrum from cosmological first-order phase transitions using data from LIGO-Virgo first three observing runs [J].
Jiang, Yang ;
Huang, Qing-Guo .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (06)
[49]   The GRANDMA network in preparation for the fourth gravitational-wave observing run [J].
Agayeva, S. ;
Aivazyan, V ;
Alishov, S. ;
Almualla, M. ;
Andrade, C. ;
Antier, S. ;
Bai, J-M ;
Baransky, A. ;
Basa, S. ;
Bendjoya, P. ;
Benkhaldoun, Z. ;
Beradze, S. ;
Berezin, D. ;
Bhardwaj, U. ;
Blazek, M. ;
Burkhonov, O. ;
Burns, E. ;
Caudill, S. ;
Christensen, N. ;
Colas, F. ;
Coleiro, A. ;
Corradi, W. ;
Coughlin, M. W. ;
Culino, T. ;
Darson, D. ;
Datashvili, D. ;
de Wasseige, G. ;
Dietrich, T. ;
Dolon, F. ;
Dornic, D. ;
Dubouil, J. ;
Ducoin, J-G ;
Duverne, P-A ;
Esamdin, A. ;
Fouad, A. ;
Guo, F. ;
Godunova, V ;
Gokuldass, P. ;
Guessoum, N. ;
Gurbanov, E. ;
Hainich, R. ;
Hasanov, E. ;
Hello, P. ;
Hussenot-Desenonges, T. ;
Inasaridze, R. ;
Iskandar, A. ;
Ishida, E. E. O. ;
Ismailov, N. ;
du Laz, T. Jegou ;
Kann, D. A. .
OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS IX, 2022, 12186
[50]   Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs [J].
Herner, K. ;
Annis, J. ;
Brout, D. ;
Soares-Santos, M. ;
Kessler, R. ;
Sako, M. ;
Butler, R. ;
Doctor, Z. ;
Palmese, A. ;
Allam, S. ;
Tucker, D. L. ;
Sobreira, F. ;
Yanny, B. ;
Diehl, H. T. ;
Frieman, J. ;
Glaeser, N. ;
Garcia, A. ;
Sherman, N. F. ;
Bechtol, K. ;
Berger, E. ;
Chen, H. Y. ;
Conselice, C. J. ;
Cook, E. ;
Cowperthwaite, P. S. ;
Davis, T. M. ;
Drlica-Wagner, A. ;
Farr, B. ;
Finley, D. ;
Foley, R. J. ;
Garcia-Bellido, J. ;
Gill, M. S. S. ;
Gruendl, R. A. ;
Holz, D. E. ;
Kuropatkin, N. ;
Lin, H. ;
Marriner, J. ;
Marshall, J. L. ;
Matheson, T. ;
Neilsen, E. ;
Paz-Chinchon, F. ;
Sauseda, M. ;
Scolnic, D. ;
Williams, P. K. G. ;
Avila, S. ;
Bertin, E. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Rosell, A. Carnero ;
Carrasco-Kind, M. ;
Carretero, J. .
ASTRONOMY AND COMPUTING, 2020, 33