Superconvergence analysis for nonlinear parabolic equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$EQ_1^\mathrm{{rot}}$$\end{document} nonconforming finite element

被引:0
作者
Dongyang Shi
Junjun Wang
Fengna Yan
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Nonlinear parabolic equation; nonconforming FE; Semi-discrete and linearized Crank–Nicolson fully discrete schemes; Supserclose result; 65N15; 65N30;
D O I
10.1007/s40314-016-0344-6
中图分类号
学科分类号
摘要
EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$EQ_1^\mathrm{{rot}}$$\end{document} nonconforming finite element method (FEM) applied to a class of nonlinear parabolic equation is discussed. First, by use of two typical characters of this element (one is that the associated FE interpolation operator is identical to its traditional Ritz projection operator; the other is that the consistency error is of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2)$$\end{document}, one order higher than the interpolation error, when the exact solution of the problems belongs to H3(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^3(\Omega )$$\end{document}), the supercloseness of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2)$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm for semi-discrete scheme is obtained without the boundedness of numerical solution in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-norm through splitting the numerical solution into several parts. Moreover, we get the desired result with requirement of u,ut∈H3(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,u_t\in H^3(\Omega )$$\end{document} only. Secondly, a linearized Crank–Nicolson fully discrete scheme is proposed and the superclose property of order O(h2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2+\tau ^2)$$\end{document} is derived by constructing a suitable auxiliary problem. Finally, a numerical example is carried out to confirm our theoretical analysis. Here, h is the subdivision parameter and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the time step.
引用
收藏
页码:307 / 327
页数:20
相关论文
共 73 条
[1]  
Chatzipantelidis P(2003)Error estimates for the finite volume element method for parobolic equations in convex polygonal domains[J] Numer Methods Part Differ Equ 20 650-674
[2]  
Lazarov RD(1999)Solution of parabolic equation by backward Euler-mixed finite element methods on a dynamically changing mesh[J] SIAM J Numer Anal 37 423-442
[3]  
Thomée V(1977)JR Galerkin’s method for some highly nonlinear problems[J] SIAM J Numer Anal 14 327-347
[4]  
Dawson C(2016)Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear Thermistor equations J Sci Comput 66 504-527
[5]  
Kirby R(2010)Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations[J] J Comput Math 233 2285-2301
[6]  
Dendy JE(2013)Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data[J] J Sci Comput 56 131-164
[7]  
Gao HD(2013)Immersed finite element methods for parabolic equations with moving interface[J] Numer Methods Part Differ Equ 29 619-646
[8]  
Gao GH(2005)Constrained nonconforming rotated Math Numer Sinic 27 311-324
[9]  
Wang TK(2009) element for Stokes flow and planar elasticity[J] Appl Math 54 1-15
[10]  
Goswami D(2005)Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods[J] IMA J Numer Anal 25 160-181