Life beyond set agreement

被引:0
|
作者
David Yu Cheng Chan
Vassos Hadzilacos
Sam Toueg
机构
[1] University of Toronto,Department of Computer Science
来源
Distributed Computing | 2020年 / 33卷
关键词
Asynchronous system; Shared memory; Set agreement; Consensus hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
The set agreement power of a shared object O describes O’s ability to solve set agreement problems: it is the sequence (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1, n_2, {\ldots }, n_k, {\ldots })$$\end{document} such that, for every k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, using O and registers one can solve the k-set agreement problem among at most nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes. It has been shown that the ability of an object O to implement other objects is not fully characterized by its consensus number (the first component of its set agreement power). This raises the following natural question: is the ability of an object O to implement other objects fully characterized by its set agreement power? We prove that the answer is no: every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of Herlihy’s consensus hierarchy has two linearizable objects that have the same set agreement power but are not equivalent, i.e., at least one cannot implement the other. We also show that every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of the consensus hierarchy contains a deterministic linearizable object On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} with some set agreement power (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1,n_2,\ldots ,n_k,\ldots )$$\end{document} such that being able to solve the k-set agreement problems among nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes, for all k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, is not enough to implement On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document}.
引用
收藏
页码:255 / 277
页数:22
相关论文
共 50 条
  • [41] The notion of veto number for distributed agreement problems
    Friedman, R
    Mostefaoui, A
    Raynal, M
    DISTRIBUTED COMPUTING - IWDC 2004, PROCEEDINGS, 2004, 3326 : 315 - 325
  • [42] On set consensus numbers
    Eli Gafni
    Petr Kuznetsov
    Distributed Computing, 2011, 24 : 149 - 163
  • [43] Reaching Agreement Among k out of n Processes
    Taubenfeld, Gadi
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2024, 2024, 14662 : 438 - 455
  • [44] Intersecting sets:: a basic abstraction for asynchronous agreement problems
    Friedman, R
    Mostéfaoui, A
    Raynal, M
    11TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING, PROCEEDINGS, 2005, : 15 - 22
  • [45] Reaching agreement in the presence of contention-related crash failures
    Durand, Anais
    Raynal, Michel
    Taubenfeld, Gadi
    THEORETICAL COMPUTER SCIENCE, 2023, 966
  • [46] Anonymous obstruction-free (n, k)-set agreement with n-k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k+1$$\end{document} atomic read/write registers
    Zohir Bouzid
    Michel Raynal
    Pierre Sutra
    Distributed Computing, 2018, 31 (2) : 99 - 117
  • [47] Partial synchrony based on set timeliness
    Marcos K. Aguilera
    Carole Delporte-Gallet
    Hugues Fauconnier
    Sam Toueg
    Distributed Computing, 2012, 25 : 249 - 260
  • [48] Local Deal-Agreement Algorithms for Load Balancing in Dynamic General Graphs
    Yefim Dinitz
    Shlomi Dolev
    Manish Kumar
    Theory of Computing Systems, 2023, 67 : 348 - 382
  • [49] Contention-related crash failures: Definitions, agreement algorithms, and impossibility results
    Durand, Anais
    Raynal, Michel
    Taubenfeld, Gadi
    THEORETICAL COMPUTER SCIENCE, 2022, 909 : 76 - 86
  • [50] Local Deal-Agreement Algorithms for Load Balancing in Dynamic General Graphs
    Dinitz, Yefim
    Dolev, Shlomi
    Kumar, Manish
    THEORY OF COMPUTING SYSTEMS, 2022, 67 (2) : 348 - 382