Life beyond set agreement

被引:0
|
作者
David Yu Cheng Chan
Vassos Hadzilacos
Sam Toueg
机构
[1] University of Toronto,Department of Computer Science
来源
Distributed Computing | 2020年 / 33卷
关键词
Asynchronous system; Shared memory; Set agreement; Consensus hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
The set agreement power of a shared object O describes O’s ability to solve set agreement problems: it is the sequence (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1, n_2, {\ldots }, n_k, {\ldots })$$\end{document} such that, for every k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, using O and registers one can solve the k-set agreement problem among at most nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes. It has been shown that the ability of an object O to implement other objects is not fully characterized by its consensus number (the first component of its set agreement power). This raises the following natural question: is the ability of an object O to implement other objects fully characterized by its set agreement power? We prove that the answer is no: every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of Herlihy’s consensus hierarchy has two linearizable objects that have the same set agreement power but are not equivalent, i.e., at least one cannot implement the other. We also show that every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of the consensus hierarchy contains a deterministic linearizable object On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} with some set agreement power (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1,n_2,\ldots ,n_k,\ldots )$$\end{document} such that being able to solve the k-set agreement problems among nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes, for all k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, is not enough to implement On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document}.
引用
收藏
页码:255 / 277
页数:22
相关论文
共 50 条
  • [31] (anti-Ωx x Σz)-Based k-Set Agreement Algorithms
    Bouzid, Zohir
    Travers, Corentin
    PRINCIPLES OF DISTRIBUTED SYSTEMS, 2010, 6490 : 189 - +
  • [32] FAILURE DETECTORS TO SOLVE ASYNCHRONOUS k-SET AGREEMENT: A GLIMPSE OF RECENT RESULTS
    Fatourou, Panagiota
    Raynal, Michel
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2011, (103): : 74 - 95
  • [33] Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower bound
    Mostefaoui, Achour
    Raynal, Michel
    Travers, Corentin
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (01) : 58 - 69
  • [34] Strongly Terminating Early-Stopping k-Set Agreement in Synchronous Systems with General Omission Failures
    Philippe Raïpin Parvédy
    Michel Raynal
    Corentin Travers
    Theory of Computing Systems, 2010, 47 : 259 - 287
  • [35] Byzantine Agreement with Homonyms
    Delporte-Gallet, Carole
    Fauconnier, Hugues
    Guerraoui, Rachid
    Kermarrec, Anne-Marie
    Ruppert, Eric
    Hung Tran-The
    PODC 11: PROCEEDINGS OF THE 2011 ACM SYMPOSIUM PRINCIPLES OF DISTRIBUTED COMPUTING, 2011, : 21 - 30
  • [36] Byzantine agreement with homonyms
    Delporte-Gallet, Carole
    Fauconnier, Hugues
    Guerraoui, Rachid
    Kermarrec, Anne-Marie
    Ruppert, Eric
    Hung Tran-The
    DISTRIBUTED COMPUTING, 2013, 26 (5-6) : 321 - 340
  • [37] Coordination Without Prior Agreement
    Taubenfeld, Gadi
    PROCEEDINGS OF THE ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'17), 2017, : 325 - 334
  • [38] EARLY STOPPING IN BYZANTINE AGREEMENT
    DOLEV, D
    REISCHUK, R
    STRONG, HR
    JOURNAL OF THE ACM, 1990, 37 (04) : 720 - 741
  • [39] Distributed agreement in tile self-assembly
    Sterling, Aaron
    NATURAL COMPUTING, 2011, 10 (01) : 337 - 355
  • [40] Distributed agreement in tile self-assembly
    Aaron Sterling
    Natural Computing, 2011, 10 : 337 - 355