Life beyond set agreement

被引:0
|
作者
David Yu Cheng Chan
Vassos Hadzilacos
Sam Toueg
机构
[1] University of Toronto,Department of Computer Science
来源
Distributed Computing | 2020年 / 33卷
关键词
Asynchronous system; Shared memory; Set agreement; Consensus hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
The set agreement power of a shared object O describes O’s ability to solve set agreement problems: it is the sequence (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1, n_2, {\ldots }, n_k, {\ldots })$$\end{document} such that, for every k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, using O and registers one can solve the k-set agreement problem among at most nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes. It has been shown that the ability of an object O to implement other objects is not fully characterized by its consensus number (the first component of its set agreement power). This raises the following natural question: is the ability of an object O to implement other objects fully characterized by its set agreement power? We prove that the answer is no: every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of Herlihy’s consensus hierarchy has two linearizable objects that have the same set agreement power but are not equivalent, i.e., at least one cannot implement the other. We also show that every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of the consensus hierarchy contains a deterministic linearizable object On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} with some set agreement power (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1,n_2,\ldots ,n_k,\ldots )$$\end{document} such that being able to solve the k-set agreement problems among nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes, for all k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, is not enough to implement On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document}.
引用
收藏
页码:255 / 277
页数:22
相关论文
共 50 条
  • [21] In search of the holy grail: Looking for the weakest failure detector for wait-free set agreement
    Raynal, Michel
    Travers, Corentin
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2006, 4305 : 3 - 19
  • [22] Topological treatment of early-deciding set-agreement
    Guerraoui, Rachid
    Herlihy, Maurice
    Pochon, Bastian
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2006, 4305 : 20 - 35
  • [23] The Weakest Failure Detector for Message Passing Set-Agreement
    Delporte-Gallet, Carole
    Fauconnier, Hugues
    Guerraoui, Rachid
    Tielmann, Andreas
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2008, 5218 : 109 - +
  • [24] The Complexity of Early Deciding Set Agreement: How can Topology help?
    Guerraoui, Rachid
    Pochon, Bastian
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 230 : 71 - 78
  • [25] Set Agreement Power Is Not a Precise Characterization for Oblivious Deterministic Anonymous Objects
    Taubenfeld, Gadi
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2019, 2019, 11639 : 293 - 308
  • [26] Set Agreement and Renaming in the Presence of Contention-Related Crash Failures
    Durand, Anais
    Raynal, Michel
    Taubenfeld, Gadi
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2018, 2018, 11201 : 269 - 283
  • [27] Anonymous obstruction-free (n, k)-set agreement with n - k+1 atomic read/write registers
    Bouzid, Zohir
    Raynal, Michel
    Sutra, Pierre
    DISTRIBUTED COMPUTING, 2018, 31 (02) : 99 - 117
  • [28] Weak Synchrony Models and Failure Detectors for Message Passing (k-)Set Agreement
    Biely, Martin
    Robinson, Peter
    Schmid, Ulrich
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2009, 5923 : 285 - 299
  • [29] Distributed computability: Relating k-immediate snapshot and x-set agreement
    Delporte, Carole
    Fauconnier, Hugues
    Rajsbaum, Sergio
    Raynal, Michel
    INFORMATION AND COMPUTATION, 2022, 285
  • [30] Randomized k-set agreement in crash-prone and Byzantine asynchronous systems
    Mostefaoui, Achour
    Moumen, Hamouma
    Raynal, Michel
    THEORETICAL COMPUTER SCIENCE, 2018, 709 : 80 - 97