Life beyond set agreement

被引:0
|
作者
David Yu Cheng Chan
Vassos Hadzilacos
Sam Toueg
机构
[1] University of Toronto,Department of Computer Science
来源
Distributed Computing | 2020年 / 33卷
关键词
Asynchronous system; Shared memory; Set agreement; Consensus hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
The set agreement power of a shared object O describes O’s ability to solve set agreement problems: it is the sequence (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1, n_2, {\ldots }, n_k, {\ldots })$$\end{document} such that, for every k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, using O and registers one can solve the k-set agreement problem among at most nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes. It has been shown that the ability of an object O to implement other objects is not fully characterized by its consensus number (the first component of its set agreement power). This raises the following natural question: is the ability of an object O to implement other objects fully characterized by its set agreement power? We prove that the answer is no: every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of Herlihy’s consensus hierarchy has two linearizable objects that have the same set agreement power but are not equivalent, i.e., at least one cannot implement the other. We also show that every level n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} of the consensus hierarchy contains a deterministic linearizable object On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} with some set agreement power (n1,n2,…,nk,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_1,n_2,\ldots ,n_k,\ldots )$$\end{document} such that being able to solve the k-set agreement problems among nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document} processes, for all k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, is not enough to implement On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document}.
引用
收藏
页码:255 / 277
页数:22
相关论文
共 50 条
  • [1] Life beyond set agreement
    Chan, David Yu Cheng
    Hadzilacos, Vassos
    Toueg, Sam
    DISTRIBUTED COMPUTING, 2020, 33 (3-4) : 255 - 277
  • [2] Life Beyond Set Agreement
    Chan, David Yu Cheng
    Hadzilacos, Vassos
    Toueg, Sam
    PROCEEDINGS OF THE ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'17), 2017, : 345 - 354
  • [3] On the Classification of Deterministic Objects via Set Agreement Power
    Chan, David Yu Cheng
    Hadzilacos, Vassos
    Toueg, Sam
    PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 71 - 80
  • [4] Test&Set, adaptive renaming and set agreement: a guided visit to asynchronous computability
    Gafni, Eli
    Raynal, Michel
    Travers, Corentin
    SRDS 2007: 26TH IEEE INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, : 93 - +
  • [5] THE COMBINED POWER OF CONDITIONS AND INFORMATION ON FAILURES TO SOLVE ASYNCHRONOUS SET AGREEMENT
    Mostefaoui, Achour
    Rajsbaum, Sergio
    Raynal, Michel
    Travers, Corentin
    SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1574 - 1601
  • [6] THE COMPLEXITY OF EARLY DECIDING SET AGREEMENT
    Gafni, Eli
    Guerraoui, Rachid
    Pochon, Bastian
    SIAM JOURNAL ON COMPUTING, 2011, 40 (01) : 63 - 78
  • [7] From adaptive renaming to set agreement
    Gafni, Eli
    Mostefaoui, Achour
    Raynal, Michel
    TraverS, Corentin
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (14) : 1328 - 1335
  • [8] A Non-topological Proof for the Impossibility of k-Set Agreement
    Attiya, Hagit
    Castaneda, Armando
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, 2011, 6976 : 108 - +
  • [9] Multi-Sided Shared Coins and Randomized Set-Agreement
    Hillel, Keren Censor
    SPAA '10: PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2010, : 60 - 68
  • [10] A non-topological proof for the impossibility of k-set agreement
    Attiya, Hagit
    Castaneda, Armando
    THEORETICAL COMPUTER SCIENCE, 2013, 512 : 41 - 48