Segregation and symmetry breaking of strongly coupled two-component Bose–Einstein condensates in a harmonic trap

被引:2
作者
Jimena Royo-Letelier
机构
[1] Université Versailles-Saint-Quentin-en-Yvelines,Laboratoire de Mathématiques de Versailles
来源
Calculus of Variations and Partial Differential Equations | 2014年 / 49卷
关键词
35Q40; 35R35; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study ground states of two-component condensates in a harmonic trap. We prove that in the strongly coupled and weakly interacting regime, the two components segregate while a symmetry breaking occurs. More precisely, we show that when the intercomponent coupling strength is very large and both intracomponent coupling strengths are small, each component is close to the positive or the negative part of a second eigenfunction of the harmonic oscillator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} . As a result, the supports of the components approach complementary half-spaces, and they are not radially symmetric.
引用
收藏
页码:103 / 124
页数:21
相关论文
共 83 条
[1]  
Alt H. W.(1984)Variational problems with two phases and their free boundaries Trans. Am. Math. Soc 282 431-461
[2]  
Caffarelli L. A.(2008)Many-body physics with ultracold gases Rev. Mod. Phys. 80 885-964
[3]  
Friedman A.(1976)On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation J. Funct. Anal. 22 366-389
[4]  
Bloch I.(1988)Minimal rearrangements of Sobolev functions J. Reine Angew. Math. 384 153-179
[5]  
Dalibard J.(1998)Gradient estimates for variable coefficient parabolic equations and singular perturbation problems Am. J. Math. 120 391-439
[6]  
Zwerger W.(2009)The geometry of solutions to a segregation problem for nondivergence systems J. Fixed Point Theory Appl. 5 319-351
[7]  
Brascamp H. J.(2007)An optimal partition problem for eigenvalues J. Sci. Comput. 31 5-18
[8]  
Lieb E. H.(2008)Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries J. Am. Math. Soc. 21 847-862
[9]  
Brothers J.(2004)Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates Physica D 196 341-361
[10]  
Ziemer W.(2005)Asymptotic estimates for the spatial segregation of competitive systems Adv. Math. 195 524-560