A Note on Maximal Inequality for Stochastic Convolutions

被引:0
作者
Erika Hausenblas
Jan Seidler
机构
[1] University of Salzburg,Institute of Mathematics
[2] Academy of Sciences,Mathematical Institute
来源
Czechoslovak Mathematical Journal | 2001年 / 51卷
关键词
infinite-dimensional Wiener process; stochastic convolution; maximal inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\int_0^t {S(t - s)} \psi (s){\text{d}}W(s)$$ \end{document} driven by a Wiener process W in a Hilbert space in the case when the semigroup S(t) is of contraction type.
引用
收藏
页码:785 / 790
页数:5
相关论文
empty
未找到相关数据