A Note on Maximal Inequality for Stochastic Convolutions
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Erika Hausenblas
Jan Seidler
论文数: 0引用数: 0
h-index: 0
机构:University of Salzburg,Institute of Mathematics
Jan Seidler
机构:
[1] University of Salzburg,Institute of Mathematics
[2] Academy of Sciences,Mathematical Institute
来源:
Czechoslovak Mathematical Journal
|
2001年
/
51卷
关键词:
infinite-dimensional Wiener process;
stochastic convolution;
maximal inequality;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\int_0^t {S(t - s)} \psi (s){\text{d}}W(s)$$
\end{document} driven by a Wiener process W in a Hilbert space in the case when the semigroup S(t) is of contraction type.