Limit sets for complete minimal immersions

被引:0
作者
Antonio Alarcón
Nikolai Nadirashvili
机构
[1] Universidad de Granada,Departamento de Geometría y Topología
[2] CNRS,undefined
[3] LATP,undefined
[4] CMI,undefined
来源
Mathematische Zeitschrift | 2008年 / 258卷
关键词
Complete minimal surfaces; Plateau problem; Proper immersion; Limit set; 53A10; 49Q05; 49Q10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the behaviour of the limit set of complete proper compact minimal immersions in a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \subset {\mathbb{R}}^3$$\end{document} with the boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial G \subset C^2.$$\end{document} We prove that the second fundamental form of the surface ∂G is nonnegatively defined at every point of the limit set of such immersions.
引用
收藏
页码:107 / 113
页数:6
相关论文
共 18 条
  • [1] Bourgain J.(1993)On the radial variation of bounded analytic functions on the disc Duke Math. J. 69 671-682
  • [2] López F.J.(2002)Adding handles to Nadirashvili’s surfaces J. Differ. Geom. 60 155-175
  • [3] Martín F.(2007)Bounded domains which are universal for minimal surfaces Am. J. Math. 129 455-461
  • [4] Morales S.(2004)On the asymptotic behavior of a complete bounded minimal surface in T. Am. Math. Soc. 356 3985-3994
  • [5] Martín F.(2005)Complete proper minimal surfaces in convex bodies of Duke Math. J. 128 559-593
  • [6] Meeks W.H.(2006)Complete proper minimal surfaces in convex bodies of Comment. Math. Helv. 81 699-725
  • [7] Nadirashvili N.(2007) (II): the behavior of the limit set Arch. Ration. Mech. An. 184 285-301
  • [8] Martín F.(1996)A Jordan curve spanned by a complete minimal surface Invent. Math. 126 457-465
  • [9] Morales S.(2001)Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces Mosc. Math. J. 1 601-604
  • [10] Martín F.(1971)An application of potential analysis to minimal surfaces J. Differ. Geom. 6 267-270