Pell and Pell–Lucas Numbers as Product of Two Repdigits

被引:0
作者
F. Erduvan
R. Keskin
机构
[1] MEB,
[2] Namik Kemal High School,undefined
[3] Sakarya University,undefined
来源
Mathematical Notes | 2022年 / 112卷
关键词
Pell number; Pell–Lucas number; repdigit; Diophantine equation; linear form in logarithms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:861 / 871
页数:10
相关论文
共 21 条
[1]  
Faye B.(2015)Pell and Pell–Lucas numbers with only one distinct digit Ann. Math. Inform. 45 55-60
[2]  
Luca F.(2020)Pell and Pell–Lucas numbers as sums of two repdigits Bull. Malays. Math. Sci. Soc. 43 1253-1271
[3]  
Adegbindin C.(2019)Fibonacci and Lucas numbers as products of two repdigits Turkish Journal of Mathematics 43 2142-2153
[4]  
Luca F.(2021)Repdigits base b as products of two Pell numbers or Pell–Lucas numbers Boletín de la Sociedad Matemática Mexicana 27 1-17
[5]  
Togbé A.(2000)An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II Izv. Math. 64 1217-1269
[6]  
Erduvan F. (2006)Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers Ann. of Math. 163 969-1018
[7]  
Keskin R. (2016)Powers of two as sums of two k-Fibonacci numbers Miskolc Math. Notes 17 85-100
[8]  
Erduvan F. (1998)A generalization of a theorem of Baker and Davenport Quart. J. Math. Oxford Ser. (2) 49 291-306
[9]  
Keskin R. (1969)The equations Quart. J. Math. Oxford Ser. (2) 20 129-137
[10]  
Şiar Z. (undefined) and undefined undefined undefined-undefined