Blow-up of Solutions to the Generalized Inviscid Proudman–Johnson Equation

被引:0
作者
Alejandro Sarria
Ralph Saxton
机构
[1] University of New Orleans,Department of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2013年 / 15卷
关键词
35B44; 35B10; 35B65; 35Q35; Proudman–Johnson equation; Blow-up;
D O I
暂无
中图分类号
学科分类号
摘要
For arbitrary values of a parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbb{R},}$$\end{document} finite-time blow-up of solutions to the generalized, inviscid Proudman–Johnson equation is studied via a direct approach which involves the derivation of representation formulae for solutions to the problem.
引用
收藏
页码:493 / 523
页数:30
相关论文
共 33 条
[1]  
Barnes E.W.(1908)A new development of the theory of hypergeometric functions Proc. Lond. Math. Soc. 6 141-177
[2]  
Bressan A.(2005)Global solutions of the Hunter–Saxton equation SIAM J. Math. Anal. 37 996-1026
[3]  
Constantin A.(1984)A solvable nonlinear wave equation Stud. Appl. Math. 70 189-199
[4]  
Calogero F.(1989)Blow-up of unsteady two-dimensional Euler and Navier–Stokes equations having stagnation-point form J. Fluid Mech. 203 1-22
[5]  
Childress S.(2010)Global and singular solutions to the generalized Proudman–Johnson equation J. Differ. Equ. 249 392-413
[6]  
Ierley G.R.(2012)Global weak solutions to the generalized Proudman–Johnson equation Commun. Pure Appl. Anal. 11 1387-1396
[7]  
Spiegel E.A.(2009)On the inviscid Proudman–Johnson equation Proc. Japan Acad. Ser. A Math. Sci. 85 81-83
[8]  
Young W.R.(2011)Generalized characteristics and the Hunter–Saxton equation J. Hyperbol. Differ. Equ. 8 159-168
[9]  
Cho C.H.(1991)Dynamics of director fields SIAM J. Appl. Math. 51 1498-1521
[10]  
Wunsch M.(1995)On a completely integrable nonlinear hyperbolic variational equation: I. Global existence of weak solutions Arch. Ration. Mech. Anal. 129 305-353