共 50 条
- [21] Classical and quantum cosmology of K-essentially modified R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} and pure Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^p$$\end{document} gravity General Relativity and Gravitation, 2019, 51 (7)
- [22] Soliton solutions of nonlinear coupled Davey–Stewartson Fokas system using modified auxiliary equation method and extended (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G^{2})$$\end{document}-expansion method Scientific Reports, 14 (1)
- [23] New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({G'}/{G})$$\end{document}-expansion method Pramana, 2018, 90 (5)
- [24] (G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{G^{'}}{G^{2}}$$\end{document})-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations Optical and Quantum Electronics, 2018, 50 (3)
- [25] Analytical solutions to the nonlinear space–time fractional models via the extended G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\frac{{G^{\prime } }}{{G^{2} }}} \right)$$\end{document}-expansion method Indian Journal of Physics, 2020, 94 (8) : 1237 - 1247
- [26] Generalized (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G^{\prime }}{G})$$\end{document}-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials Optical and Quantum Electronics, 2017, 49 (2)
- [27] Exact travelling wave Solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\left( G^{\prime }/G\right) }$$\end{document}-expansion method SeMA Journal, 2016, 73 (2) : 121 - 129
- [29] Exploring new features for the (2+1)-dimensional Kundu–Mukherjee–Naskar equation via the techniques of (G′/G,1/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\prime }/G,1/G$$\end{document})-expansion and exponential rational function Optical and Quantum Electronics, 2023, 55 (1)
- [30] An Exact Solution for Geophysical Edge Waves in the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}-Plane Approximation Journal of Mathematical Fluid Mechanics, 2015, 17 (4) : 699 - 706