共 50 条
- [1] Application of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(G^{\prime}$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G)$\end{document}-expansion method for the Burgers, Burgers–Huxley and modified Burgers–KdV equations Pramana, 2011, 76 (6) : 831 - 842
- [2] Extended (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\frac{G^{\prime }}{G}})$$\end{document}-Expansion Method for Konopelchenko–Dubrovsky (KD) Equation of Fractional Order International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 161 - 172
- [3] The Generalized \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^{\prime }/G) $$\end{document}-Expansion Method for the Loaded Korteweg–de Vries Equation Journal of Applied and Industrial Mathematics, 2021, 15 (4) : 679 - 685
- [4] A modified form of G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left(\frac{G^\prime}{G}\right)}$$\end{document} -expansion method and its application to Potential Kadomtsev–Petviashvili (PKP) equation Japan Journal of Industrial and Applied Mathematics, 2014, 31 (1) : 125 - 136
- [5] Bernoulli (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document}-expansion method for nonlinear Schrödinger equation under effect of constant potential Optical and Quantum Electronics, 2021, 53 (6)
- [6] Exact analytical solutions to the geodesic equations in general relativity via (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document} - expansion method General Relativity and Gravitation, 2022, 54 (8)
- [7] Application of G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{G'}{G^2}$$\end{document}-Expansion Method for Solving Fractional Differential Equations International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1415 - 1424
- [8] Soliton solutions of the generalized Klein–Gordon equation by using G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}\right) $$\end{document}-expansion method Computational and Applied Mathematics, 2014, 33 (3) : 831 - 839
- [9] Anisotropic cosmological models in f(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(G)$\end{document} gravity Astrophysics and Space Science, 2016, 361 (4)
- [10] A Novel G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{G}'/G} \right) $$\end{document}-Expansion Method and its Application to the (3 + 1)-Dimensional Burger’s Equations International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 13 - 24