Analysis of functional electrical stimulation parameters by muscular contraction time and knee joint angular variation

被引:3
作者
Krueger E. [1 ]
Scheeren E.M. [2 ]
Nogueira-Neto G.N. [2 ,3 ]
Neves E.B. [1 ]
da Silveira Nantes Button V.L. [3 ]
Nohama P. [1 ,2 ,3 ]
机构
[1] Laboratório de Engenharia de Reabilitação (CPGEI), Universidade Tecnológica Federal do Paraná, Curitiba, PR
[2] Laboratório de Engenharia de Reabilitação (PPGTS), Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, PR
[3] Departamento de Engenharia Biomédica/(DEB) e Centro de Engenharia Biomédica (CEB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP
来源
Krueger, E. (kruegereddy@gmail.com) | 1600年 / Springer Verlag卷 / 03期
关键词
Electrogoniometer; Fatigue; Functional electrical stimulation (FES); Motoneuron adaptation;
D O I
10.1007/s13534-013-0082-2
中图分类号
学科分类号
摘要
Purpose: In the present study, five FES profiles were compared in order to find the best combination of activeperiod and burst frequency that might artificially sustain muscle contraction for the longest time with the lowest knee joint variation. Methods: Spinal cord injured volunteers (N=10) participated in this study. The frequency of each FES profile was 1 kHz with variable pulse active period (100 μs or 200 μs) and pulse inactive period (900 μs or 800 μs). The setup burst frequencies had either 50 Hz (3 ms active time and 17 ms rest time) or 70 Hz (3 ms active time and 11 ms rest time). Results: The best results were obtained to FES profiles P2 (burst frequency of 70 Hz and pulse active period of 100 μs), P3 (burst frequency of 50 Hz and pulse active period of 200 μs) and P4 (burst frequency of 70 Hz and pulse active period of 200 μs). Conclusions: In order to maintain the SCIV's knee angle with minimal variation, the best results occurred with the application of P2, P3 and P4 FES profiles. © 2013 Korean Society of Medical and Biological Engineering and Springer.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 45 条
[1]  
Yu N.Y., Chang S.H., The characterization of contractile and myoelectric activities in paralyzed tibialis anterior post electrically elicited muscle fatigue, Artif Organs., 34, 4, (2010)
[2]  
Schearer E.M., Liao Y.-W., Perreault E.J., Tresch M.C., Lynch K.M., Optimal sampling of recruitment curves for functional electrical stimulation control, Annu Int Conf IEEE Eng Med Biol Soc, pp. 1-4, (2012)
[3]  
Enoka R.M., Duchateau J., Muscle fatigue: what, why and how it influences muscle function, J Physiol., 586, 1, pp. 11-23, (2008)
[4]  
Kernell D., Monster A.W., Motoneurone properties and motor fatigue, Exp Brain Res., 46, 2, pp. 197-204, (1982)
[5]  
Xia T., Frey Law L.A., A theoretical approach for modeling peripheral muscle fatigue and recovery, J Biomech., 41, 14, pp. 3046-3052, (2008)
[6]  
Matsunaga T., Shimada Y., Sato K., Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses, Arch Phys Med Rehab., 80, 1, pp. 48-53, (1999)
[7]  
Thrasher A., Graham G.M., Popovic M.R., Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters, Artif Organs., 29, 6, pp. 453-458, (2005)
[8]  
Hodgkin A.L., Huxley A.F., The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J Physiol., 116, 4, pp. 497-506, (1952)
[9]  
Kernell D., Monster A.W., Time course and properties of late adaptation in spinal motoneurones of the cat, Exp Brain Res., 46, 2, pp. 191-196, (1982)
[10]  
Fisekovic N., Popovic D.B., New controller for functional electrical stimulation systems, Med Eng Phys., 23, 6, pp. 391-399, (2001)