Convolutors on Sω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}_{\omega }({\mathbb R}^N)$$\end{document}

被引:0
作者
Angela A. Albanese
Claudio Mele
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷 / 4期
关键词
Convolutor; Multiplier; Weight function; Ultradifferentiable function space; Fourier transform; Primary 46E10; 46F05; Secondary 47B38;
D O I
10.1007/s13398-021-01097-1
中图分类号
学科分类号
摘要
In this paper we continue the study of the spaces OM,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{M,\omega }({\mathbb R}^N)$$\end{document} and OC,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{C,\omega }({\mathbb R}^N)$$\end{document} undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that OC,ω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$\end{document} is the space of convolutors of the space Sω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}_\omega ({\mathbb R}^N)$$\end{document} of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space Sω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}'_\omega ({\mathbb R}^N)$$\end{document}. We also establish that the Fourier transform is an isomorphism from OC,ω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$\end{document} onto OM,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{M,\omega }({\mathbb R}^N)$$\end{document}. In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by Lb(Sω(RN))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$\end{document} and the last space is endowed with its natural lc-topology.
引用
收藏
相关论文
共 39 条
  • [21] Neyt L(undefined)Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (II) undefined undefined undefined-undefined
  • [22] Vindas J(undefined)undefined undefined undefined undefined-undefined
  • [23] Dimovski P(undefined)undefined undefined undefined undefined-undefined
  • [24] Prangoski B(undefined)undefined undefined undefined undefined-undefined
  • [25] Velinov D(undefined)undefined undefined undefined undefined-undefined
  • [26] Dimovski P(undefined)undefined undefined undefined undefined-undefined
  • [27] Pilipović S(undefined)undefined undefined undefined undefined-undefined
  • [28] Prangoski B(undefined)undefined undefined undefined undefined-undefined
  • [29] Vindas J(undefined)undefined undefined undefined undefined-undefined
  • [30] Gómez-Collado MC(undefined)undefined undefined undefined undefined-undefined